• Title/Summary/Keyword: 작업자 포즈

Search Result 4, Processing Time 0.019 seconds

A Study on Good Pose in Pose to Pose (포즈 투 포즈 방식 애니메이션에서 포즈 선별에 대한 연구)

  • Kim, Young-Chul
    • Cartoon and Animation Studies
    • /
    • s.41
    • /
    • pp.57-73
    • /
    • 2015
  • A pose is an important component in the animation with timing and spacing. Pose is the key to describe the story-telling or how the animation behavior. Key animation method is Straight Ahead and pose to pose method. Many animaters have been using these two methods, or by a mix of two ways. It is possible that computer animation make a pose using interpolation between keyframes. The many animators of computer animation are using pose to pose in their work. It is depend on good and strong pose that make audience understand a story or a situation. This makes animators to be efficient of inefficient operation. In this study, according to the effective good pose to catch proposes four ways. There are four methods of making pose that are stretch and squash, the height of the character, the center of weight, step. The law of 12 kinds of Disney Animation is a good reference for the study.

A Design and Implementation of Worker Motion 3D Visualization Module Based on Human Sensor

  • Sejong Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.109-114
    • /
    • 2024
  • In this paper, we design and implement a worker motion 3D visualization module based on human sensors. The three key modules that make up this system are Human Sensor Implementation, Data Set Creation, and Visualization. Human Sensor Implementation provides the functions of setting and installing the human sensor locations and collecting worker motion data through the human sensors. Data Set Creation offers functions for converting and storing motion data, creating near real-time worker motion data sets, and processing and managing sensor and motion data sets. Visualization provides functions for visualizing the worker's 3D model, evaluating motions, calculating loads, and managing large-scale data. In worker 3D model visualization, motion data sets (Skeleton & Position) are synchronized and mapped to the worker's 3D model, and the worker's 3D model motion animation is visualized by combining the worker's 3D model with analysis results. The human sensor-based worker motion 3D visualization module designed and implemented in this paper can be widely utilized as a foundational technology in the smart factory field in the future.

Detecting the screw-assembly state of a valve-body using the AR method (AR 방식을 이용한 밸브바디의 나사 조립 상태 검지)

  • Kang, Moon-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.24-30
    • /
    • 2021
  • In this study, an augmented reality (AR) app that detects the screw-assembly state of a car valve-body and assists the assembly work is developed and the effectiveness of the app is shown through testing. The app creates the contents indicating the screw-assembly position and order, and the screw-assembly state. Then, the contents are registrated onto the valve-body image on a smart-phone screen to be shown to the worker during assembly. To this end, the features are extracted from the 2D image of the valve-body and the location of the valve-body is tracked. By extracting the areas where the screws are to be assembled, and periodically determining the luminance of these areas, it is checked whether the screws are assembled in order at the predetermined position of the valve-body. When an error is detected during assembly, a warning sound is notified to the worker, and the worker can check the assembly state on the smart-phone screen and handle the error, immediately. Study results found that it takes about 65 ms to detect the assembly state of the five screws, and the assembly state is detected without error for 1 hour.

Class Classification and Validation of a Musculoskeletal Risk Factor Dataset for Manufacturing Workers (제조업 노동자 근골격계 부담요인 데이터셋 클래스 분류와 유효성 검증)

  • Young-Jin Kang;;;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • There are various items in the safety and health standards of the manufacturing industry, but they can be divided into work-related diseases and musculoskeletal diseases according to the standards for sickness and accident victims. Musculoskeletal diseases occur frequently in manufacturing and can lead to a decrease in labor productivity and a weakening of competitiveness in manufacturing. In this paper, to detect the musculoskeletal harmful factors of manufacturing workers, we defined the musculoskeletal load work factor analysis, harmful load working postures, and key points matching, and constructed data for Artificial Intelligence(AI) learning. To check the effectiveness of the suggested dataset, AI algorithms such as YOLO, Lite-HRNet, and EfficientNet were used to train and verify. Our experimental results the human detection accuracy is 99%, the key points matching accuracy of the detected person is @AP0.5 88%, and the accuracy of working postures evaluation by integrating the inferred matching positions is LEGS 72.2%, NECT 85.7%, TRUNK 81.9%, UPPERARM 79.8%, and LOWERARM 92.7%, and considered the necessity for research that can prevent deep learning-based musculoskeletal diseases.