작업의 지연을 줄이거나 예방하기 위해서는 작업지연상황을 지속적으로 확인하여 작업지연을 야기하는 원인을 찾아내고 대책을 세워야 한다. 그래서 지금까지 작업지연기간 산정방법 또는 작업지연의 클레임 사례에 관한 연구 등이 이루어졌으나 프로젝트 종료 후 결과에 의한 분석방법이나 원인분류체계를 제시한 것이 대부분이다. 건설 프로젝트는 동일한 조건하에서도 주변 환경에 따라 결과값이 다르게 나타나는 일회성이 강한 분야 중에 하나이다. 따라서 공사 진행 중에 발생하는 작업지연에 대해 효과적으로 대처할 수 있는 분석방법과 절차가 필요하다. 본 연구는 작업지연 원인분석 범위를 프로젝트내의 현장관리 분야로 국한하고 작업지연 원인분류 체계를 투입요소를 대상으로 작업지연 원인인자와 작업지 연 원인속성으로 나눴다. 작업지 연 원인분류 체계는 전문가 인터뷰 및 설문조사를 통해 검증하고 작업지 연 원인속성 및 원인인자의 특성을 분석하고 VSM을 응용한 작업지연 원인 분석방법 및 절차를 제시한다.
전기설비에 접근하여 활선작업을 수행하는 과정에서 "안전조치, 작업공구, 먼지, 분진, 쥐, 절연" 등의 문제로 기인하는 단락사고가 발생하면 플라즈마(plasma) 아크 형태의 전기적 방전이 일어나므로, 아크 플래시 위험에 노출된 작업자는 심각한 화상은 물론 생명에 위험을 초래할 수 있다. 이러한 위험으로부터 근로자를 보호하기 위하여 IEEE Std. 1584에 수행절차와 방법에 대하여 상세히 해설하고 있고, NFPA 70E는 보호기준 등을 규정하고 있다. 국내에서도 이 기준 등을 참고하여 산업안전기준에 관한 규칙에 의거, 활선작업 및 활선근접작업에 관한 기술지침(KOSHA CODE E-3G-2005)과 난연성 전기 작업복 선정에 관한 기술지침(KOSHA CODE E-32-2006을 규정하고 있다. 그러나 국내에서는 외국 기업 일부를 제외하고는 아크 플래시 위험분석 업무를 실무에 적용하는 사례를 찾아보기 어렵다. 또한 적용 범위에 있어서도 난연성 전기 작업복 선정에 관한 기술지침을 600V 이상의 활선작업 및 활선근접 작업시만 착용하도록 한정한 것은 아크 플래시 위험에 대한 보호가 충분하지 않은 것으로 판단된다. 오히려 고압보다도 저압회로 고장 지점의 최소 단락전류에서 차단기의 동작시간이 지연되는 경우, 사고에너지를 더 증가시키기 때문에 위험성과 빈도는 높아질 수 있다 이와 관련하여 본문에서는 "아크 플래시 위험" 분석 및 평가방법에 대하여 살펴보기로 한다.
본 논문에서는 주행 중 운전자의 운전작업 중 전방 주의집중 여부를 모니터링하는 연구 방안들을 조사하고 최신 연구 동향을 분석하였으며, 자율주행자동차에서 운전자의 주의집중이 필요한 상황들에 대해 사전에 안내하는 방안을 제시하고자 한다. 연구 동향을 조사한 결과 대부분의 방법은 시각 자료 기반과 생체신호 기반으로 진행하고 있다. 연구분석 결과를 바탕으로 두 가지 방법 중 본 연구에서는 시각 자료 기반 연구 방법에 초점을 맞추어, 자동차에 설치된 카메라를 통해 수집된 영상에서 운전자의 운전작업 주의 여부를 식별하는 방법들에 대해서 분석을 진행하였다. 주행 영상에서 HoG(histogram of oriented gradients) 특징과 딥러닝 학습을 통해 운전자의 주의집중 여부를 모니터링하는 방법이 효과적임을 제시한다. 본 연구조사를 통해 분석된 운전자 모니터링 방안들을 자율주행 자동차에 적용하기 위한 운전자 주의 태만 경고시스템에 적용이 가능함을 제시한다.
지식을 관리하는 것에 주력했던 기존의 인공지능 연구 방향은 동적으로 움직이는 외부 환경에서 적응할 수 있는 시스템 구축으로 변화하고 있다. 이러한 시스템의 기본 능력을 이루는 많은 학습방법 중에서 비교적 최근에 제시된 강화학습은 일반적인 사례에 적용하기 쉽고 동적인 환경에서 뛰어난 적응 능력을 보여주었다. 이런 장점을 바탕으로 강화학습은 에이전트 연구에 많이 사용되고 있다. 하지만, 현재까지 연구결과는 강화학습으로 구축된 에이전트로 해결할 수 있는 작업의 난이도에 한계가 있음을 보이고 있다. 특히, 복수의 부분 작업으로 구성되어 있는 작업을 처리할 경우에 기본의 강화학습 방법은 문제 해결에 한계를 보여주고 있다. 본 논문에서는 복수의 부분 작업으로 구성된 작업이 왜 처리하기 힘든가를 분석하고, 이런 문제를 처리할 수 있는 방안을 제안한다. 본 논문에서 제안하고 있는 EQ-Learning의 강화학습 방법의 대표적인 Q-Learning을 확장시켜 문제를 해결한다. 이 방법은 각각의 부분 작업 해결 방안을 학습시키고 그 학습 결과들의 적절한 순서를 찾아내 전체 작업을 해결한다. EQ-Learning의 타당성을 검증하기 위해 격자 공간에서 복수의 부분작업으로 구성된 미로 문제를 통하여 실험하였다.
많은 학습 방법 중에서 비교적 최근에 제시된 강화학습은 동적인 환경에서 뛰어난 학습 능력을 보여주었다. 이런 장점을 바탕으로 강화학습은 학습을 기초로 하는 에이전트 연구에 많이 사용되고 있다. 하지만, 현재까지 연구 결과는 강화학습으로 구축된 에이전트로 해결 할 수 있는 작업의 난이도에 한계가 있음을 보이고 있다. 특히, 복수의 부분 작업으로 구성되어 있는 복합 작업을 처리할 경우에 기존의 강화학습 방법은 문제 해결에 한계를 보여주고 있다. 본 논문에서는 복수의 부분 작업으로 구성된 복합 작업이 왜 처리하기 힘든가를 분석하고, 이런 문제를 처리할 수 있는 방안을 제안한다. 본 논문에서 제안하고 있는 EQ-Learning은 강화학습 방법의 대표적인 Q-Learning을 개량하고 기존의 문제를 해결한다. 이 방법은 각각의 부분 작업 해결 방안을 학습시키고 그 학습 결과들의 적절한 적용 순서를 찾아내 복합 작업을 해결한다. EQ-Learning의 타당성을 검증하기 위해 격자 공간에서 복수의 부분작업으로 구성된 미로 문제를 통하여 실험하였다.
본 논문에서는 SVM (Support Vector Machine)을 기반으로 하여 인체의 뇌 하부구조인 해마에 대한 지능적 형상분석 방법을 제공한다. 일반적으로 의료 영상으로부터 해마의 형상 분석을 하기 위해서는 충분한 임상 데이터를 필요로 한다. 하지만 현실적으로 많은 양의 표본들을 얻는 것이 쉽지 않기 때문에 전문가의 지식을 기반으로 한 작업이 수반되어야 한다. 결국 이러한 요소들이 분석 작업을 어렵게 한다. 의학 기술이 복잡해 지면서 최근의 형상 분석 연구는 점차 통계적 모델을 기반으로 진행되고 있다. 본 연구에서는 해마로부터 고해상도의 매개변수형 모델을 만들어 형상 표현으로 이용하고, 집단간 분류 작업에 SVM 알고리즘을 적용하는 지능적 분석 방법을 구현한다. 우선 메쉬 데이터로부터 물리변형모델 기반의 매개변수 모델을 구축하고, PDM (point distribution model) 방법을 적용하여 두 집단을 대표하는 평균 모델을 생성한다. 마지막으로 SVM 기반의 이진 분류기를 구축하여 집단간 분류 작업을 수행한다. 구현한 모델링 방법과 분류기의 성능을 평가하기 위하여 본 연구에서는 네 가지 커널 함수 (linear, radial basis function, polynomial, sigmoid)들을 적용한다. 본 논문에서 제시한 매개변수형 모델은 다양한 형태의 의료 데이터로부터 보편적인 3차원 모델을 생성하고, 또한 모델의 전역적, 국부적인 특징들을 복합적으로 표현할 수 있기 때문에 통계적 형상분석에 적합하다. 그리고 SVM 기반의 분류기는 적은 수의 학습 데이터로부터 정상인 해마 집단과 간질 환자 집단간의 정확한 분류를 가능하게 한다.
간이 측정기에 대한 연구는 실내공기 오염의 연구에서 인체가 작업장에서 실내 대기오염물에 노출이 되는 정도를 평가하기 위하여 개발되었다. 처음에는 주로 포름알데히드나 이산화질소를 측정하기 위하여 개발되었으나, 최근에는 오존을 측정하는 방법으로도 개발되고 있다. 오존을 측정하는 간이 측정기의 개발을 위해서는 오존과 선택적으로 그리고 정량적으로 반응하여 오존을 포획하는 시약을 선정하는 작업과 이때 사용된 포집용 filter 선정의 작업이 중요하다. 또한 오존 포획 담체의 분석 방법도 중요한데, 간이 측정기를 통하여 경제성을 높이고 별다른 후처리 작업 없이 현장에서 바로 색도 변화로 오존을 분석할 수 있는 방법이 추천되는 추세이다. (중략)
기존 대화시스템과 달리 대화형 개인 비서 시스템은 사용자에게 정보를 제공하기 위해 앱(APP)을 구동하는 방법을 사용한다. 사용자가 앱을 통해 정보를 얻고자 할 때, 사용자가 필요로 하는 정보를 제공해주기 위해서는 사용자의 목적을 정확하게 인식하는 작업이 필요하다. 그 작업 중 중요한 두 요소는 개체명 인식과 문장목적 인식이다. 문장목적 인식이란, 사용자의 문장을 분석해 하나의 앱에 존재하는 여러 정보 중 사용자가 원하는 정보(문장의 목적)가 무엇인지 찾아주는 인식작업이다. 이러한 인식시스템을 구축하는 방법 중 대표적인 방법은 사전규칙방법과 기계학습방법이다. 사전규칙은 사전정보와 규칙을 적용하는 방법으로, 시간이 지남에 따라 새로운 규칙을 추가해야하는 문제가 있으며, 규칙이 일반화되지 않을 경우 오류가 증가하는 문제가 있다. 또 두 인식작업을 파이프라인 방식으로 적용 할 경우, 개체명 인식단계에서의 오류를 가지고 문장목적 인식단계로 넘어가기 때문에 두 단계에 걸친 성능저하와 속도저하를 초래할 수 있다. 이러한 문제점을 해결하기 위해 우리는 통계기반의 기계학습방법인 Conditional Random Fields(CRF)를 사용한다. 또한 사전정보를 CRF와 결합함으로써, 단독으로 수행하는 CRF방식의 성능을 개선시킨다. 개체명과 문장목적인식의 구조를 분석한 결과, 비슷한 자질을 사용할 수 있다고 판단하여, 두 작업을 동시에 수행하는 방법을 제안한다. 실험결과, 사전규칙방법보다 제안한 방법이 문장단위 2.67% 성능개선을 보였다.
현재 사용되고 있는 작업방식은 로봇과 positioner의 상대적인 위치 및 자세설정에 의하여 작업효율 및 성능향상을 꾀할 수 있음에도 불구하고 비효율적인 방법으로 사용하고 있는 실정이다. 이러한 문제점을 해결하기 위한 방법중의 하나로 로보트와 positioner시스템을 하나의 기구학적 모델로 제어하는 방법이 제시된 바 있다. 상기의 연구에서는 로보트와 positioner(이하 R-P 시스템)간의 협조 제어가 여유자유도제어 방법을 이용하여 가능한 것임을 보였다. 그러나 용접작업과 같은 positioner 위에서의 연속경로 작업에 있어서는 작업공간과 특이성(singularity) 등에 관련된 여러 가지 문제점을 안고 있다. 특이성은 외부의 물리적인 제약이나 로보트의 기하학적 구조의 문제로 발생될 수도 있는데 이때 자유도의 손실을 유발하므로 임의의 원하는 방향으로 움직일 수 없게 된다. 이러한 면에서 R-P 시스템의 조작 성능 평가가 중요한 의미를 갖는다. 본 연구에서는 실제 산업현장에서 이용되고 있는 5 자유도를 갖는 수직 다관절형 로보트와 positioner에 대하여 협조 제어 방법을 검토한다. 그리고 작업공간 내의 조작성능평가를 위하여 Jacobian 행렬을 이용한 조작성지수를 위하여 Jacobian 행렬을 이용한 조작성지수를 도입하고 주어진 작업단면에 대한 이들의 분포를 등고선 그래프로 시각화 한다. 또한 조작성지수를 최대화 하는 알고리즘을 R-P 시스템에 적용하고 시뮬레이션을 통하여 그 타당성을 검토한다
본 논문은 도로 건설 공사 프로젝트들의 전 공정에 걸쳐 수행되는 모든 작업들을 대상으로 총 프로젝트 생산성 (Total Project Productivity)을 측정하고 분석하기 위한 방법을 소개한다. 측정 방법의 주안점은 복합적으로 병행되는 작업들의 생산량을 통합하여, 프로젝트 전체에 대한 포괄적인 생산성 값들을 구하는 방법을 개발하는데 두고 있다. 이 방법을 통해 Florida Department of Transportation (FDOT)로부터 발주된 세 개의 실제 고속도로 건설 공사 프로젝트들로부터 수천 개의 총 프로젝트 생산성 데이터 값들이 얻어졌으며. 이를 바탕으로 프로젝트 생산성을 분석하기 위한 방법의 타당성 검증이 이루어졌다. 그 결과로, 프로젝트 레벨에서의 총 생산성은 건설 작업들에 관한 현장 자료를 바탕으로 측정과 분석이 이루어질 수 있음이 입증되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.