• 제목/요약/키워드: 작물 질병 진단

검색결과 9건 처리시간 0.026초

고추 작물의 정밀 질병 진단을 위한 딥러닝 모델 통합 연구: YOLOv8, ResNet50, Faster R-CNN의 성능 분석 (Integrated Deep Learning Models for Precise Disease Diagnosis in Pepper Crops: Performance Analysis of YOLOv8, ResNet50, and Faster R-CNN)

  • 서지인;심현
    • 한국전자통신학회논문지
    • /
    • 제19권4호
    • /
    • pp.791-798
    • /
    • 2024
  • 본 연구의 목적은 YOLOv8, ResNet50, Faster R-CNN 모델을 활용하여 고추 작물의 질병을 진단하고, 각 모델의 성능을 비교하는 것이다. 첫 번째 모델은 YOLOv8을 사용하여 질병을 진단하였고, 두 번째 모델은 ResNet50을 단독으로 사용하였다. 세 번째 모델은 YOLOv8과 ResNet50을 결합하여 질병을 진단하였으며, 네 번째 모델은 Faster R-CNN을 사용하여 질병을 진단하였다. 각 모델의 성능은 정확도, 정밀도, 재현율, F1-Score 지표로 평가된다. 연구 결과, YOLOv8과 ResNet50을 결합한 모델이 가장 높은 성능을 보였으며, YOLOv8 단독 모델도 높은 성능을 나타냈다.

잎사귀 영상처리기반 질병 감지 알고리즘 (Disease Detection Algorithm Based on Image Processing of Crops Leaf)

  • 박정현;이성근;고진광
    • 한국빅데이터학회지
    • /
    • 제1권1호
    • /
    • pp.19-22
    • /
    • 2016
  • 최근 IT 기술을 활용하여 농작물의 병충해 조기 진단에 관한 연구가 활발히 진행되고 있다. 본 논문은 카메라 센서를 통해 받아온 작물의 잎사귀 이미지를 분석하여 병충해를 조기에 감지할 수 있는 이미지 프로세싱 기법에 대해 논한다. 본 논문은 개선된 K 평균 클러스터링 방법을 활용하여 잎사귀 질병 감염 여부를 진단하는 알고리즘을 제안한다. 잎사귀 감염 분류 실험을 통해, 제안한 알고리즘이 정성적인 평가에서 더 좋은 성능을 나타낸 것으로 분석되었다.

  • PDF

토마토 잎사귀 질병 감지를 위한 이미지 처리 메커니즘 (An Image Processing Mechanism for Disease Detection in Tomato Leaf)

  • 박정현;이성근
    • 한국전자통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.959-968
    • /
    • 2019
  • 농업 분야에서 여러 가지 센서들과 임베디드 시스템을 활용하여 한 무선 센서 네트워크 기술이 적용되고 있는 추세이다. 특히, 센서 네트워크를 활용하여 작물의 질병을 조기에 진단할 수 있는 많은 연구가 진행되고 있다. 기존 병충해 진단 연구들은 실제 농가에 적용하기 어려운 부분이 존재한다. 본 논문은 이를 개선하고자 하였으며, 화상카메라를 통해 받아온 작물의 잎사귀 이미지를 분석하여 병충해를 초기에 감지 가능한 알고리즘을 제안한다. 실제 시설원예 및 노지 환경 농가의 캡쳐한 이미지 내에서 감염 의심 영역을 개선된 K 평균 클러스터링 기법을 통해 분류하였다. 그 후 엣지 검출, 엣지 추적 기법을 활용하여 해당 영역의 잎사귀 내부 존재 여부를 확인하였다. 인근 농가에서 촬영한 토마토 잎사귀 이미지를 이용하여 성능 평가를 수행하였다. 기존 논문의 방법 보다 제안 알고리즘의 감영 영역 분류 능력이 우수한 것으로 나타났다.

농작물 병해충 진단을 위한 인공지능 앱, Dr. Vegetable (Dr. Vegetable: an AI-based Mobile Application for Diagnosis of Plant Diseases and Insect Pests)

  • 김수환;정대기;이승준;정성엽;양동재;정근영;황석형;황세웅
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.457-460
    • /
    • 2023
  • 본 연구는 시설작물의 병충해 진단을 위해 딥러닝 모델을 응용한 인공지능 서비스 앱, Dr. Vegetable을 제안하고자 한다. 농업 현장에서 숙련된 농부는 한눈에 농작물의 병충해를 판단할 수 있지만 미숙련된 농부는 병충해 피해를 발견하더라도 그 종류와 해결 방법을 찾아내기가 매우 어렵다. 또한 아무리 숙련된 농부라고 할지라도 육안검사만으로 병충해를 조기에 발견하는 것은 쉽지 않다. 한편 시설작물의 경우 병충해에 의한 연쇄피해가 발생할 우려가 있으므로 병충해의 조기 발견 및 방제가 매우 중요하다. 즉, 농부의 경험에 따른 농작물 병해충 진단은 정확성을 장담할 수 없으며 비용과 시간적인 측면에서 위험성이 높다고 할 수 있다. 본 논문에서는 YOLOv5를 활용하여 상추, 고추, 토마토 등 농작물의 병충해를 진단하는 인공지능 서비스를 제안한다. 특히 한국지능정보사회진흥원이 운영하고 있는 AI 통합 플랫폼인 AI 허브에서 제공하는 노지 작물 질병 및 해충 진단 이미지를 사용하여 딥러닝 모델을 학습하였다. 본 연구를 통해 개발된 모바일 어플리케이션을 이용하여 실제 시설농장에서 병충해 진단 서비스를 적용한 결과 약 86%의 정확도, F1 Score 0.84, 그리고 0.98의 mAP 값을 얻을 수 있었다. 본 연구에서 개발한 병충해 진단 딥러닝 모델을 다양한 조도에서 강인하게 동작하도록 개선한다면 농업 현장에서 널리 활용될 수 있을 것으로 기대한다.

  • PDF

병해충 분류를 위한 DANet-CAM (DANet-CAM for Pest & Disease Classification)

  • 웬트리찬흥 응;김영언;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.295-296
    • /
    • 2022
  • 작물을 경작 해충과 질병은 오랫동안 주요 관심사였다. 농업에서 병해충을 탐지하기 위해 전통적인 방법을 사용하는 것은 더 이상 높은 효율성을 제공하지 않는다. 오늘날 과학과 인공 지능의 폭발적인 발달로 인해 농업분야의 연구원들은 병해충을 탐지하기 위해 딥 러닝을 적용하고 있다. 최근에 다양한 분야의 문제들을 해결하기 위해 수많은 모델들이 발표되었지만, 많은 병해충 진단 딥러닝을 사용한 방법들은 하드웨어 리소스를 낭비하고 실제 농장에서 사용하기 어렵다. 따라서 본 논문에서는 작물의 병해충을 분류하기 위해 Select Kernel Attention(SK Attention)을 Channel Attention Module 로 변경하여 Decoupling-and-Attention network (DANet)을 하드웨어 리소스 사용을 최소화한다.

방사능 노출과 방사선 보호 사례 연구 (Case Study of Radiation Protection and Radiation Exposure)

  • 민영실
    • 산업과 과학
    • /
    • 제2권3호
    • /
    • pp.1-7
    • /
    • 2023
  • 최근 방사능 노출에 대한 염려에 대한 이슈가 높아지고 있다. 토양, 물, 공기, 작물등에 영향을 주며 장기적으로 환경오염 및 식량오염이 발생하며 나아가 사회적인 혼란 및 경제적 타격을 초래할 것으로 여겨진다. 방사능 노출로 질병을 일으키기도 하지만, 질병진단을 위한 방법으로, X선촬영, CT, PET-CT등 핵의학 검사를 실시하고, 암치료 목적으로 방사선 동위원소에 노출시키기도 한다. 후쿠시마 방사능 폐기물 방류소식으로 물, 특히 식수에 포함되는 방사선에 대한 헝가리의 사례 연구 및 남극 대륙의 Larsemann Hills 지역 검사에서 세계 보건 기구에서 권장하는 음용수의 규정된 방사능 한계 내에 있었다. DNA손상, 세포 및 장기손상, 암에 관련된 내용을 중심으로 방사선 보호제를 살펴보고, 또한 복구물질중 ACE억제제, 항산화제, 천연물질등에 관하여 여러 문헌을 조사하였다. 일상에서 방사능에 노출되지만 안전할 수 있는 이유는 아마도 방사선보호물질, 방사능 피폭에 대한 복구 물질이 있을 것으로 여겨, 가능한 물질들을 찾아보고자 한다.

IoT 및 딥 러닝 기반 스마트 팜 환경 최적화 및 수확량 예측 플랫폼 (A Smart Farm Environment Optimization and Yield Prediction Platform based on IoT and Deep Learning)

  • 최호길;안희학;정이나;이병관
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권6호
    • /
    • pp.672-680
    • /
    • 2019
  • 본 논문은 농장의 바이오 센서 데이터를 수집해서 농장에서 재배중인 농작물의 질병을 진단하고, 그 해 수확량을 예측하는 IoT 및 딥 러닝 기반 스마트 팜 환경 최적화 및 수확량 예측 플랫폼을 제안한다. 이 플랫폼은 현재 날씨, 토양 미생물 등 수집 가능한 모든 정보를 수집하여 작물이 잘 성장할 수 있도록 농장 환경을 최적화하고, 농장에서 재배중인 작물의 잎을 이용하여 작물의 질병을 진단하고, 그리고, 농장의 모든 정보를 사용하여 올해 수확량을 예측한다. 실험 결과 AEOM(Agricultural Environment Optimization Module)의 평균 정확도는 RF(Random Forest)보다 약 15%, GBD(Gradient Boosting Tree)보다 약 8% 높고, 데이터가 증가해도 RF나 GBD에 비해 정확도가 덜 감소한다. 선형 회귀에 따르면 정확도의 기울기는 ReLU의 경우 -3.641E-4, Sigmoid의 경우 -4.0710E-4, 계단함수의 경우 -7.4534E-4이다. 따라서 ReLU 사용시 정확도 기울기가 가장 낮으므로 테스트 데이터의 양이 증가함에 따라 ReLU는 다른 두 가지 활성화 기능보다 더 정확하다. 본 논문에서 제안한 EOYPP는 농장 전체를 관리하는 플랫폼으로 실제 농장에 도입된다면 국내 스마트 팜의 발전에 크게 이바지할 것이다.

초분광 영상을 이용한 딥러닝 기반의 작물 영역 스펙트럼 밴드 탐색 (Searching Spectrum Band of Crop Area Based on Deep Learning Using Hyper-spectral Image)

  • 이광형;명현정;디팍 기미레;김동훈;조세운;정성환;김병준
    • 스마트미디어저널
    • /
    • 제13권8호
    • /
    • pp.39-48
    • /
    • 2024
  • 최근 초분광 영상을 활용하여 작물의 생육 분석 및 질병을 조기에 진단하는 다양한 연구들이 등장하였지만, 수많은 스팩트럼 밴드를 사용하거나 최적의 밴드를 탐색하는 것은 어려운 문제로 남아 있다. 본 논문에서는 초분광 영상을 이용한 딥러닝 기반의 최적화된 작물 영역 스펙트럼 밴드를 탐색하는 방법을 제안한다. 제안한 방법은 초분광 영상 내 RGB 영상을 추출하여 Vision Transformer 기반 Segformer을 통해 배경과 전경 영역을 분할한다. 분할된 결과는 그레이스케일 전환한 초분광 영상 각 밴드에 투영 후 전경과 배경 영역의 평균 픽셀 비교를 통해 작물 영역의 최적화된 스펙트럼 밴드를 탐색한다. 제안된 방법을 통해 전경과 배경 분할 성능은 평균 정확도 98.47%와 mIoU 96.48%의 성능을 나타내었다. 또한, mRMR 방법에 비해 제안 방법이 작물 영역 밀접하게 연관된 NIR 영역에 수렴하는 것을 확인하였다.

머신러닝기반 오이 생육 최적 예측 모델에 관한 연구 (A Study on the Optimal Forecasting Model for Cucumber Growth Based on Machine Learning)

  • 박기태;심현
    • 한국전자통신학회논문지
    • /
    • 제19권5호
    • /
    • pp.911-918
    • /
    • 2024
  • 본 연구는 오이 생육 데이터를 활용하여 머신러닝 기반 착과수 예측 모델을 개발하고 성능을 평가하였다. 본 연구에서는 초장, 마디수, 평균절간장, 줄기 굵기, 엽장, 엽폭, 엽수, 암꽃수를 독립 변수로, 착과수를 종속 변수로 설정하여 예측 모델을 개발하였다. 선형 회귀, 랜덤 포레스트, XGBoost, 서포트 벡터 회귀(SVR), K-최근접 이웃(KNN) 등 다양한 머신러닝 알고리즘을 적용하였으며, 모델 성능은 평균 제곱 오차(MSE)와 결정계수(R2)를 기준으로 평가하였다. 그 결과, 랜덤 포레스트 알고리즘이 MSE 3.91, R2 0.828로 가장 우수한 성능을 보였으며, 오이 생육 데이터의 비선형 관계를 효과적으로 포착함을 확인할 수 있었다. 특히, 랜덤 포레스트 모델은 이상치에 대해 강건한 성능을 보였고, 착과수 예측에서 뛰어난 성능을 입증하였다.