• Title/Summary/Keyword: 작물 질병 진단

Search Result 9, Processing Time 0.026 seconds

Integrated Deep Learning Models for Precise Disease Diagnosis in Pepper Crops: Performance Analysis of YOLOv8, ResNet50, and Faster R-CNN (고추 작물의 정밀 질병 진단을 위한 딥러닝 모델 통합 연구: YOLOv8, ResNet50, Faster R-CNN의 성능 분석)

  • Ji-In Seo;Hyun Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.791-798
    • /
    • 2024
  • The purpose of this study is to diagnose diseases in pepper crops using YOLOv8, ResNet50, and Faster R-CNN models and compare their performance. The first model utilizes YOLOv8 for disease diagnosis, the second model uses ResNet50 alone, the third model combines YOLOv8 and ResNet50, and the fourth model uses Faster R-CNN. The performance of each model was evaluated using metrics such as accuracy, precision, recall, and F1-Score. The results show that the combined YOLOv8 and ResNet50 model achieved the highest performance, while the YOLOv8 standalone model also demonstrated high performance.

Disease Detection Algorithm Based on Image Processing of Crops Leaf (잎사귀 영상처리기반 질병 감지 알고리즘)

  • Park, Jeong-Hyeon;Lee, Sung-Keun;Koh, Jin-Gwang
    • The Journal of Bigdata
    • /
    • v.1 no.1
    • /
    • pp.19-22
    • /
    • 2016
  • Many Studies have been actively conducted on the early diagnosis of the crop pest utilizing IT technology. The purpose of the paper is to discuss on the image processing method capable of detecting the crop leaf pest prematurely by analyzing the image of the leaf received from the camera sensor. This paper proposes an algorithm of diagnosing leaf infection by utilizing an improved K means clustering method. Leaf infection grouping test showed that the proposed algorithm illustrated a better performance in the qualitative evaluation.

  • PDF

An Image Processing Mechanism for Disease Detection in Tomato Leaf (토마토 잎사귀 질병 감지를 위한 이미지 처리 메커니즘)

  • Park, Jeong-Hyeon;Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.959-968
    • /
    • 2019
  • In the agricultural industry, wireless sensor network technology has being applied by utilizing various sensors and embedded systems. In particular, a lot of researches are being conducted to diagnose diseases of crops early by using sensor network. There are some difficulties on traditional research how to diagnose crop diseases is not practical for agriculture. This paper proposes the algorithm which enables to investigate and analyze the crop leaf image taken by image camera and detect the infected area within the image. We applied the enhanced k-means clustering method to the images captured at horticulture facility and categorized the areas in the image. Then we used the edge detection and edge tracking scheme to decide whether the extracted areas are located in inside of leaf or not. The performance was evaluated using the images capturing tomato leaves. The results of performance evaluation shows that the proposed algorithm outperforms the traditional algorithms in terms of classification capability.

Dr. Vegetable: an AI-based Mobile Application for Diagnosis of Plant Diseases and Insect Pests (농작물 병해충 진단을 위한 인공지능 앱, Dr. Vegetable)

  • Soohwan Kim;DaeKy Jeong;SeungJun Lee;SungYeob Jung;DongJae Yang;GeunyEong Jeong;Suk-Hyung Hwang;Sewoong Hwang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.457-460
    • /
    • 2023
  • 본 연구는 시설작물의 병충해 진단을 위해 딥러닝 모델을 응용한 인공지능 서비스 앱, Dr. Vegetable을 제안하고자 한다. 농업 현장에서 숙련된 농부는 한눈에 농작물의 병충해를 판단할 수 있지만 미숙련된 농부는 병충해 피해를 발견하더라도 그 종류와 해결 방법을 찾아내기가 매우 어렵다. 또한 아무리 숙련된 농부라고 할지라도 육안검사만으로 병충해를 조기에 발견하는 것은 쉽지 않다. 한편 시설작물의 경우 병충해에 의한 연쇄피해가 발생할 우려가 있으므로 병충해의 조기 발견 및 방제가 매우 중요하다. 즉, 농부의 경험에 따른 농작물 병해충 진단은 정확성을 장담할 수 없으며 비용과 시간적인 측면에서 위험성이 높다고 할 수 있다. 본 논문에서는 YOLOv5를 활용하여 상추, 고추, 토마토 등 농작물의 병충해를 진단하는 인공지능 서비스를 제안한다. 특히 한국지능정보사회진흥원이 운영하고 있는 AI 통합 플랫폼인 AI 허브에서 제공하는 노지 작물 질병 및 해충 진단 이미지를 사용하여 딥러닝 모델을 학습하였다. 본 연구를 통해 개발된 모바일 어플리케이션을 이용하여 실제 시설농장에서 병충해 진단 서비스를 적용한 결과 약 86%의 정확도, F1 Score 0.84, 그리고 0.98의 mAP 값을 얻을 수 있었다. 본 연구에서 개발한 병충해 진단 딥러닝 모델을 다양한 조도에서 강인하게 동작하도록 개선한다면 농업 현장에서 널리 활용될 수 있을 것으로 기대한다.

  • PDF

DANet-CAM for Pest & Disease Classification (병해충 분류를 위한 DANet-CAM)

  • Hung, Nguyen Tri Chan;Kim, Young Un;Lee, Hyo Jong
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.295-296
    • /
    • 2022
  • 작물을 경작 해충과 질병은 오랫동안 주요 관심사였다. 농업에서 병해충을 탐지하기 위해 전통적인 방법을 사용하는 것은 더 이상 높은 효율성을 제공하지 않는다. 오늘날 과학과 인공 지능의 폭발적인 발달로 인해 농업분야의 연구원들은 병해충을 탐지하기 위해 딥 러닝을 적용하고 있다. 최근에 다양한 분야의 문제들을 해결하기 위해 수많은 모델들이 발표되었지만, 많은 병해충 진단 딥러닝을 사용한 방법들은 하드웨어 리소스를 낭비하고 실제 농장에서 사용하기 어렵다. 따라서 본 논문에서는 작물의 병해충을 분류하기 위해 Select Kernel Attention(SK Attention)을 Channel Attention Module 로 변경하여 Decoupling-and-Attention network (DANet)을 하드웨어 리소스 사용을 최소화한다.

Case Study of Radiation Protection and Radiation Exposure (방사능 노출과 방사선 보호 사례 연구)

  • Young Sil Min
    • Advanced Industrial SCIence
    • /
    • v.2 no.3
    • /
    • pp.1-7
    • /
    • 2023
  • Recently, it is increasing that a issue of concern about radiation exposure. It affects soil, water, air, crops, etc., and in the long term, environmental pollution and food pollution occur, and it is considered to cause social problems and economic damage. Radiation exposure causes diseases and health problems, but as a method for diagnosing diseases, nuclear medicine tests such as X-ray imaging, CT, and PET-CT are conducted, and radiation isotopes are exposed for the purpose of cancer treatment. A Hungarian case study on radiation in water, particularly drinking water, following the release of radioactive waste from Fukushima, and an examination of the Larsemann Hills area in Antarctica, found that it was within the prescribed radioactivity limits of drinking water recommended by the World Health Organization. We looked at radioprotective agents, focusing on DNA damage, cell and organ damage, and cancer, and also investigated various literatures on ACE inhibitors, antioxidants, and natural substances among restoration materials. Although exposed to radiation in everyday life, the reason why it can be safe is probably because there is a radiation protection material and a recovery material for radiation exposure, so we are trying to find possible materials.

A Smart Farm Environment Optimization and Yield Prediction Platform based on IoT and Deep Learning (IoT 및 딥 러닝 기반 스마트 팜 환경 최적화 및 수확량 예측 플랫폼)

  • Choi, Hokil;Ahn, Heuihak;Jeong, Yina;Lee, Byungkwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.672-680
    • /
    • 2019
  • This paper proposes "A Smart Farm Environment Optimization and Yield Prediction Platform based on IoT and Deep Learning" which gathers bio-sensor data from farms, diagnoses the diseases of growing crops, and predicts the year's harvest. The platform collects all the information currently available such as weather and soil microbes, optimizes the farm environment so that the crops can grow well, diagnoses the crop's diseases by using the leaves of the crops being grown on the farm, and predicts this year's harvest by using all the information on the farm. The result shows that the average accuracy of the AEOM is about 15% higher than that of the RF and about 8% higher than the GBD. Although data increases, the accuracy is reduced less than that of the RF or GBD. The linear regression shows that the slope of accuracy is -3.641E-4 for the ReLU, -4.0710E-4 for the Sigmoid, and -7.4534E-4 for the step function. Therefore, as the amount of test data increases, the ReLU is more accurate than the other two activation functions. This paper is a platform for managing the entire farm and, if introduced to actual farms, will greatly contribute to the development of smart farms in Korea.

Searching Spectrum Band of Crop Area Based on Deep Learning Using Hyper-spectral Image (초분광 영상을 이용한 딥러닝 기반의 작물 영역 스펙트럼 밴드 탐색)

  • Gwanghyeong Lee;Hyunjung Myung;Deepak Ghimire;Donghoon Kim;Sewoon Cho;Sunghwan Jeong;Bvouneiun Kim
    • Smart Media Journal
    • /
    • v.13 no.8
    • /
    • pp.39-48
    • /
    • 2024
  • Recently, various studies have emerged that utilize hyperspectral imaging for crop growth analysis and early disease diagnosis. However, the challenge of using numerous spectral bands or finding the optimal bands for crop area remains a difficult problem. In this paper, we propose a method of searching the optimized spectral band of crop area based on deep learning using the hyper-spectral image. The proposed method extracts RGB images within hyperspectral images to segment background and foreground area through a Vision Transformer-based Seformer. The segmented results project onto each band of gray-scale converted hyperspectral images. It determines the optimized spectral band of the crop area through the pixel comparison of the projected foreground and background area. The proposed method achieved foreground and background segmentation performance with an average accuracy of 98.47% and a mIoU of 96.48%. In addition, it was confirmed that the proposed method converges to the NIR regions closely related to the crop area compared to the mRMR method.

A Study on the Optimal Forecasting Model for Cucumber Growth Based on Machine Learning (머신러닝기반 오이 생육 최적 예측 모델에 관한 연구)

  • Ki-Tae Park;Hyun Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.911-918
    • /
    • 2024
  • This study developed and evaluated the performance of a machine learning-based model for predicting cucumber fruit set using cucumber growth data. In this study, plant height, node number, internode length, stem thickness, leaf length, leaf width, leaf count, and female flower count were used as independent variables, and the fruit set was set as the dependent variable to develop a prediction model. Various machine learning algorithms, including Linear Regression, Random Forest, XGBoost, Support Vector Regression (SVR), and K-Nearest Neighbors (KNN), were applied, and model performance was evaluated based on Mean Squared Error (MSE) and the coefficient of determination (R2). As a result, the Random Forest algorithm demonstrated the best performance, with an MSE of 3.91 and an R2 of 0.828, effectively capturing the non-linear relationships in the cucumber growth data. In particular, the Random Forest model showed robustness against outliers and proved to be highly effective in predicting fruit set.