• Title/Summary/Keyword: 작물 건강 상태 분류

Search Result 1, Processing Time 0.016 seconds

Deep Learning-Based Plant Health State Classification Using Image Data (영상 데이터를 이용한 딥러닝 기반 작물 건강 상태 분류 연구)

  • Ali Asgher Syed;Jaehawn Lee;Alvaro Fuentes;Sook Yoon;Dong Sun Park
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.4
    • /
    • pp.43-53
    • /
    • 2024
  • Tomatoes are rich in nutrients like lycopene, β-carotene, and vitamin C. However, they often suffer from biological and environmental stressors, resulting in significant yield losses. Traditional manual plant health assessments are error-prone and inefficient for large-scale production. To address this need, we collected a comprehensive dataset covering the entire life span of tomato plants, annotated across 5 health states from 1 to 5. Our study introduces an Attention-Enhanced DS-ResNet architecture with Channel-wise attention and Grouped convolution, refined with new training techniques. Our model achieved an overall accuracy of 80.2% using 5-fold cross-validation, showcasing its robustness in precisely classifying the health states of tomato plants.