• Title/Summary/Keyword: 작물흡수이행

Search Result 26, Processing Time 0.022 seconds

Guidance on Estimating Soil Persistence and Degradation Kinetics from Environmental Fate Studies on Veterinary Pharmaceuticals for Environmental Risk Assessment (동물용의약품의 환경 중 위해성 평가를 위한 토양 잔류성 시험법 가이드라인)

  • Kwon, Jin-Wook
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.1
    • /
    • pp.68-75
    • /
    • 2011
  • BACKGROUND: To assess and prevent the environmental impacts and risks by veterinary pharmaceuticals, Guidance on Estimating Soil Persistence and Degradation Kinetics from Environmental Fate Studies on Veterinary Pharmaceuticals for Environmental Risk Assessment was proposed. METHODS AND RESULTS: Proposed guidance was coined by VICH, EU guideline, OECD guideline and soil dissipation studies for the purpose of international harmonizing. Guidance was also modified from pesticide soil persistence testing guidelines of US, EU, and Korea, with practical approaches adopting in-use test guideline for Korea. CONCLUSION(S): Proposed guidance are consisted of three parts; Laboratory Soil Experiment, Field Soil Dissipation Study, and Estimation of $DT_{50}/DT_{90}$. Proposed guidance is to be available for the requirement for registration of veterinary pharmaceuticals with fit for purpose in Korea.

Transfer Factor of Heavy Metals from Agricultural Soil to Agricultural Products (농작물 재배지 토양 내 비소, 납 및 카드뮴의 농산물로의 전이계수 산출)

  • Kim, Ji-Young;Lee, Ji-Ho;Kunhikrishnan, Anitha;Kang, Dae-Won;Kim, Min-Ji;Yoo, Ji-Hyock;Kim, Doo Ho;Lee, Young-Ja;Kim, Won Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.4
    • /
    • pp.300-307
    • /
    • 2012
  • BACKGROUND: The Transfer Factor (TF) of heavy metals from soil to plant is important, because TF is an indicator of heavy metal in soils and a factor that quantifies bioavailability of heavy metals to agricultural products. This study was conducted to investigate the transfer ability of Arsenic (As), Cadmium (Cd), and Lead (Pb) from soil to agricultural products. METHODS AND RESULTS: We investigated heavy metals (As, Cd and Pb) concentrations in 9 agricultural products (rice, barely, corn, pulse, lettuce, pumpkin, apple, pear, tangerin) and soil. TF of agricultural products was evaluated based on total and HCl-extractable soil concentration of As, Cd, and Pb. Regression analysis was used to predict the relationship of total and HCl-extractable concentration with agricultural product contents of As, Cd, and Pb. The result showed that TF was investigated average 0.006~0.309 (As), 0.002~6.185 (Cd), 0.003~0.602 (Pb). The mean TF value was the highest as rice 0.309 in As, lettuce 6.185, pear 0.717, rice 0.308 in Cd, lettuce 0.602, pumpkin 0.536 in Pb which were dependent on the vegetable species and cereal is showed higher than fruit-vegetables in As. CONCLUSION(S): Soil HCl-extractable concentration of As, Cd, and Pb had the larger effects on thier contents in agricultural products than total soil concentrations. We suggests that TF are served as influential factor on the prediction of uptake. Further study for uptake and accumulation mechanism of toxic metals by agricultural products will be required to assess the human health risk and need TF of more agricultural products.

Comparison of Yield and Content of Salidroside with Application Rates of Nitrogenic Fertilizer under Forcing Culture of Rhodiola rosea L. (바위돌꽃(Rhodiola rosea L.)의 촉성재배시 질소 시비에 따른 수량과 Salidroside 함량)

  • Lee, Kang-Soo;Choi, Sun-Yeong;Li, Long-Gen;Hwang, Seon-Ah
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.2
    • /
    • pp.124-130
    • /
    • 2008
  • This experiment was conducted to investigate the optimum nitrogen fertilization conditions for the production of high-quality Rhodiola rosea L. in forcing culture. Up until 48 kg N/10 a of both urea and ammonium sulfate, dry matter yield of root of Rhodiola rosea L. tended to increase with increase in application rates, however, it decreased thereafter in higher application rates. In the case of urea, the content of salidroside in the root of the Rhodiola rosea L. appeared to decrease rapidly from the application rates of 64 kg N/10 a and over. Meanwhile, the content of salidroside in the root tended to decrease gradually with the application rates exceeding 64 kg N/10 a of ammonium sulfate. The optimum fertilization rates of urea and ammonium sulfate was 45-8-20-10-10 (N-P-K-Ca-Mg) kg/10 a according to the curvilinear regression equation. However, considering the nitrogen accumulation in soil, nitrogen translocation into the plant, and dry matter yield and content of salidroside in the root of Rhodiola rosea L., the optimum fertilization rates of urea and ammonium sulfate would be 40-8-20-10-10 kg/10 a and 35-8-20-10-10 kg/10 a, respectively.

Behaviour of the Soil Residues of the Acaricide-Insecticide, [$^{14}C$]Acrinathrin;I. Behaviour during Crop(Maize) Cultivation (살비살충제 [$^{14}C$Acrinathrin 토양 잔류물의 행적 규명;I. 농작물(옥수수) 재배시의 행적)

  • Lee, Jae-Koo;Kyung, Kee-Sung;Kwon, Jeong-Wook;Ahn, Ki-Chang;Jung, In-Sang
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.2
    • /
    • pp.186-201
    • /
    • 1995
  • In order to elucidate the fate of the residues of the pyrethroid acaricide-insecticide, acrinathrin in soil, maize plants were grown for one month on the specially-made pots filled with two different types of soils containing fresh and one-month-aged residues of [$^{14}C$]acrinathrin, respectively. The mineralization of [$^{14}C$]acrinathrin to $^{14}CO_2$ during the one-month period of aging and of maize cultivation amounted to $23{\sim}24%$ and $24{\sim}33%$, respectively, of the original $^{14}C$ activities. At harvest after one-month growing, the shoots and roots contained less than 0.1% and 1% of the originally applied $^{14}C$ activity, respectively, whereas the $^{14}C$ activity remaining in soil was $65{\sim}80%$ in both soils. Three degradation products with m/z 198(3-phenoxybenzaldehyde), m/z 214(3-phenoxybenzoic acid), and m/z 228(methyl 3-phenoxybenzoate) besides an unknown were identified from acetone extracts of both soils without and with maize plants after treatment of [$^{14}C$]acrinathrin, by autoradiography and GC-MS, and those with m/z 225(3-phenoxybenzaldehyde cyanohydrin) and m/z 198 (3-phenoxybenzaldehyde) from acetone extract of the Soil A treated with 50 ppm acrinathrin and grown with maize plants for 30 days were identified by mass spectrometry. These results suggested that the hydrolytic cleavage of the ester linkage adjacent to the $^{14}C$ with a cyano group, forming 3-phenoxybenzaldehyde cyanohydrin. The removal of hydrogen cyanide therefrom leads to the formation of 3-phenoxybenzaldehyde as one of the major products. The subsequent oxidation of the aldehyde to 3-phenoxybenzoic acid, followed by decarboxylation would evolve $^{14}CO_2$. Solvent extractability of the soils where maize plants were grown for 1 month and/or [$^{14}C$]acrinathrin was aged for 1 month was less than 31% of the original $^{14}C$ activity and over 95% of the total $^{14}C$ activity in soil extracts was distributed in the organic phase. Accordingly, acrinathrin turned out to be degraded rapidly in both soils and be bound to soil constituents as well, not being available to crops.

  • PDF

A prognosis discovering lethal-related genes in plants for target identification and inhibitor design (식물 치사관련 유전자를 이용하는 신규 제초제 작용점 탐색 및 조절물질 개발동향)

  • Hwang, I.T.;Lee, D.H.;Choi, J.S.;Kim, T.J.;Kim, B.T.;Park, Y.S.;Cho, K.Y.
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.3
    • /
    • pp.1-11
    • /
    • 2001
  • New technologies will have a large impact on the discovery of new herbicide site of action. Genomics, combinatorial chemistry, and bioinformatics help take advantage of serendipity through tile sequencing of huge numbers of genes or the synthesis of large numbers of chemical compounds. There are approximately $10^{30}\;to\;10^{50}$ possible molecules in molecular space of which only a fraction have been synthesized. Combining this potential with having access to 50,000 plant genes in the future elevates tile probability of discovering flew herbicidal site of actions. If 0.1, 1.0 or 10% of total genes in a typical plant are valid for herbicide target, a plant with 50,000 genes would provide about 50, 500, and 5,000 targets, respectively. However, only 11 herbicide targets have been identified and commercialized. The successful design of novel herbicides depends on careful consideration of a number of factors including target enzyme selections and validations, inhibitor designs, and the metabolic fates. Biochemical information can be used to identify enzymes which produce lethal phenotypes. The identification of a lethal target site is an important step to this approach. An examination of the characteristics of known targets provides of crucial insight as to the definition of a lethal target. Recently, antisense RNA suppression of an enzyme translation has been used to determine the genes required for toxicity and offers a strategy for identifying lethal target sites. After the identification of a lethal target, detailed knowledge such as the enzyme kinetics and the protein structure may be used to design potent inhibitors. Various types of inhibitors may be designed for a given enzyme. Strategies for the selection of new enzyme targets giving the desired physiological response upon partial inhibition include identification of chemical leads, lethal mutants and the use of antisense technology. Enzyme inhibitors having agrochemical utility can be categorized into six major groups: ground-state analogues, group specific reagents, affinity labels, suicide substrates, reaction intermediate analogues, and extraneous site inhibitors. In this review, examples of each category, and their advantages and disadvantages, will be discussed. The target identification and construction of a potent inhibitor, in itself, may not lead to develop an effective herbicide. The desired in vivo activity, uptake and translocation, and metabolism of the inhibitor should be studied in detail to assess the full potential of the target. Strategies for delivery of the compound to the target enzyme and avoidance of premature detoxification may include a proherbicidal approach, especially when inhibitors are highly charged or when selective detoxification or activation can be exploited. Utilization of differences in detoxification or activation between weeds and crops may lead to enhance selectivity. Without a full appreciation of each of these facets of herbicide design, the chances for success with the target or enzyme-driven approach are reduced.

  • PDF

Repellent and Insecticidal Activity of Sequential Extracting Fractions Obtained from BPH-Resistant Rice Varieties against Brown Planthopper (Nilaparvata lugens) (벼멸구 저항성벼 품종 추출분획물의 기피 및 살충 활성)

  • Kim, Sung-Eun;Kim, Young-Doo;Kim, Bo-Kyoung;Ko, Jae-Kwon;Chun, Jae-Chul
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.2
    • /
    • pp.124-130
    • /
    • 2006
  • Rice plant extracts of brown planthopper (BPH) resistant rice varieties, Jangseongbyeo (JSB) and Hwacheongbyeo (HCB) at different growth stages (seedling, tillering, heading and ripening) were sequentially fractioned using hexane, ethyl ether, ethyl acetate, butanol, and distilled water. The extracts were applied to BPH susceptible rice variety, Dongjjnbyeo (DJB), to investigate the insecticidal and repellent effects against BPH. BPH insecticidal effects were not clearly observed with almost all of the extract fractions obtained from both JSB and HCB varieties for 12 h, whereas the ethyl ether and hexane extract fractions showed about 10 to 30% of BPH mortality in 24 to 48 h of application periods. An effective BPH repellent activity was found with the applications of ethyl ether extract fractions obtained from JSB variety. The extract fractions obtained from HCB variety did not show any different repellence among the various fractions. The BPH repellent effects of the extract fractions obtained at different growth stages of either JSB or HCB varieties did not show any correlations. The effect of ethyl ether fraction on BPH repellent was continually increased by 30 h after treatment and thereafter decreased. In addition, the first sub-fraction separated by a flash column chromatography eluted with chloroform:methanol (9:1, v/v) from the BPH effective ethyl ether faction in JSB variety might be meaningful to repel BPH from BPH susceptible target rice plants. The results indicated that the ethyl ether fraction obtained from JSB was higher in repellent activity than in insecticidal activity, and suggesting that there might be specific substance(s) in the first sub-fraction (sF1) of the ethyl ether fraction in JSB that could provide repellent activity against BPH.