• Title/Summary/Keyword: 작동 체적

Search Result 78, Processing Time 0.025 seconds

Thermodynamic Analysis of Trilateral Cycle Applied to Exhaust Gas of Marine Diesel Engine (선박용 디젤엔진의 배기가스에 적용된 3 변 사이클의 열역학적 분석)

  • Choi, Byung-Chul;Kim, Young-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.937-944
    • /
    • 2012
  • The thermodynamic characteristics of a trilateral cycle with water as a working fluid have been theoretically investigated for an electric generation system to recover the waste heat of the exhaust gas from a diesel engine used for the propulsion of a large ship. As a result, when a heat source was given, the efficiencies of energy and exergy were maximized by the specific conditions of the pressure and mass flow rate for the working fluid at the turbine(expander) inlet. In this case, as the condensation temperature increased, the volume expansion ratio of the turbine could be reduced properly; however, the exergy loss of the heat source and exergy destruction of the condenser increased. Therefore, in order to recover the waste exergy from the topping cycle, the combined cycle with a bottoming cycle such as an organic Rankine cycle, which is utilized at relatively low temperatures, was found to be useful.

An Experimental Study on Convection Heat Transfer in an Oscillating Flow of a Heater Tube for Stirling Cycle Machines (스터링 사이클기기용 가열기 원관내부 왕복유동에서의 열전달에 관한 실험적 연구)

  • 강병하;이건태;이춘식;이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1547-1555
    • /
    • 1993
  • An experimental study on convection heat transfer characteristics from a heated tube to an oscillating flow has been carried out, . This problem is of particular interest in the design of heat exchangers in Stirling cycle machines. Experimental system has been developed to measure temporal variations of temperature inside a heater tube during oscillating modes in a Stirling cycle machine. The dependence of temperature distributions and heat transfer rates on the oscillating frequency as well as the swept volume ratio and the mean pressure of a Stirling cycle machine is investigated in detail. The experimental results indicate that the measured temporal variations of temperature become nearly sinusoidal. The amplitude of temperature variation in the core of the tube is much more substantial than that near the tube wall, whereas the reverse is true for pulsating flows. It is also found that the heat transfer rate is increased significantly as the oscillating frequency or oscillating amplitude or the mean pressure in a tube is increased.

Chuchik(推測) in Choi Han-gi(崔漢綺)'s Ki-philosophy[氣哲學] (최한기(崔漢綺)의 기철학((氣哲學)에 있어서의 추측(推測))

  • Yun, Hee-Whan
    • (The)Study of the Eastern Classic
    • /
    • no.71
    • /
    • pp.129-146
    • /
    • 2018
  • Choi Han-gi(崔漢綺)'s system of ideas is roughly called Ki-philosophy(氣哲學) because he presupposes ki(氣) as the foundational element as well as operational agent of the whole universe. Choi suggests that each extant entity should try to approximate itself to the greater cosmic operation and changes[大氣運化], thus achieving an harmonious unity with ilki(一氣), the ultimate originator as well as principle of the universe. In order to make this happen, he proposes that one execute chuchik(推測), a kind of empirical reasoning, which is gradually sharpened through expanding and accumulating his experiences of the outer world. Continuous practicing of chuchik(推測) helps one enlarge his conceptual, experiential and existential horizon much more greatly than could otherwise be possible. Such an expansion of the self naturally brings about one's ultimate development as an ethical, responsible, sociable and even cosmic being. Seen in this respect, chuchik(推測) is not simply a cognitive maneuver but a powerful catalyst which help bind all entities under heaven in a great harmonious whole.

Burning Rate Estimate Method of Solid Propellants at High Pressure Condition (고압에서 작동하는 고체 추진제 연소속도 추정 방법)

  • Choi, Hanyoung;Lee, Dongsun;Sung, Hong-Gye;Lee, Wonmin;Kim, Eunmi
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.28-37
    • /
    • 2022
  • The burning rate estimation method of solid propellants, based on closed bomb tests, has been introduced. The composition of the combustion gas is determined by using CEA and the Noble-Abel equation of state for high pressure operation conditions. Covolume taking into account the collision among molecules due to the actual volume of the molecule is modeled by LJ potential. A cubic form function is applied to calculate the volume change of propellant grains during combustion. The estimated burning rates of five different grain configuation at high pressure are fairly compared with BRLCB results within the maximum error of 6%.

Impact of Computed Tomography Slice Thickness on Intensity Modulated Radiation Therapy Plan (전산화단층촬영 슬라이스 두께가 세기변조방사선치료계획에 미치는 영향)

  • Lee, Seoung-Jun;Kim, Jae-Chul
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.285-293
    • /
    • 2006
  • $\underline{Purpose}$: This study was to search the optimal slice thickness of computed tomography (CT) in an intensity modulated radiation therapy plan through changing the slice thickness and comparing the change of the calculated absorbed dose with measured absorbed dose. $\underline{Materials\;and\;Methods}$: An intensity modulated radiation therapy plan for a head and neck cancer patient was done, first of all. Then CT with various ranges of slice thickness ($0.125{\sim}1.0\;cm$) for a head and neck anthropomorphic phantom was done and the images were reconstructed. The plan parameters obtained from the plan of the head and neck cancer patient was applied into the reconstructed images of the phantom and then absorbed doses were calculated. Films were inserted into the phantom, and irradiated with 6 MV X-ray with the same beam data obtained from the head and neck cancer patient. Films were then scanned and isodoses were measured with the use of film measurement software and were compared with the calculated isodeses. $\underline{Results}$: As the slice thickness of CT decreased, the volume of the phantom and the maximum absorbed dose increased. As the slice thickness of CT changed from 0.125 to 1.0 cm, the maximum absorbed dose changed ${\sim}5%$. The difference between the measured and calculated volume of the phantom was small ($3.7{\sim}3.8%$) when the slice thickness of CT was 0.25 cm or less. The difference between the measured and calculated dose was small ($0.35{\sim}1.40%$) when the slice thickness of CT was 0.25 cm or less. $\underline{Conclusion}$: Because the difference between the measured and calculated dose in a head and neck phantom was small and the difference between the measured and calculated volume was small when the slice thickness of CT was 0.25 cm or less, we suggest that the slice thickness of CT should be 0.25 cm or less for an optimal intensity modulated radiation therapy plan.

Boiling Heat Transfer Coefficients of Nanofluids Containing Carbon Nanotubes up to Critical Heat Fluxes (탄소나노튜브 적용 나노유체의 임계 열유속까지의 비등 열전달계수)

  • Park, Ki-Jung;Lee, Yo-Han;Jung, Dong-Soo;Shim, Sang-Eun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.665-676
    • /
    • 2011
  • In this study, the nucleate pool boiling heat transfer coefficients (HTCs) and critical heat flux (CHF) for a smooth and square flat heater in a pool of pure water with and without carbon nanotubes (CNTs) dispersed at $60^{\circ}C$ were measured. Tested aqueous nanofluids were prepared using CNTs with volume concentrations of 0.0001%, 0.001%, and 0.01%. The CNTs were dispersed by chemically treating them with an acid in the absence of any polymers. The results showed that the pool boiling HTCs of the nanofluids are higher than those of pure water in the entire nucleate boiling regime. The acid-treated CNTs led to the deposition of a small amount of CNTs on the surface, and the CNTs themselves acted as heat-transfer-enhancing particles, owing to their very high thermal conductivity. There was a significant increase in the CHF- up to 150%-when compared to that of pure water containing CNTs with a volume concentration of 0.001%. This is attributed to the change in surface characteristics due to the deposition of a very thin layer of CNTs on the surface. This layer delays nucleate boiling and causes a reduction in the size of the large vapor canopy around the CHF. This results in a significant increase in the CHF.

Numerical Modeling for Turbulent Combustion Processes of Vortex Hybrid Rocket (Vortex Hybrid 로켓 난류연소과정의 모델링 해석)

  • 조웅호;김후중;김용모;윤명원
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.244-245
    • /
    • 2003
  • 고체나 액체 추진로켓에 비하여 하이브리드 추진 시스템은 작동조건의 안정성과 안전함등의 많은 장점을 가지고 있다. HTPB와 같은 고체연료는 제작 및 저장, 운송 그리고 장착상의 안정성을 가지고 있으며 하이브리드 로켓의 고체연료로의 산화제의 유입을 제어하면서 추력의 변화와 엔진내부의 연소중단과 재 점화를 용이하게 할 수 있다. 이러한 이유로 인하여 하이브리드 엔진은 좀 더 경제적인 장치로 기대를 모으고 있다. 그러나, 기존의 하이브리드 로켓 엔진은 고체 추진 로켓에 비하여 낮은 연료 regression 율과 연소효율을 가지는 단점이 있다. 이러한 단점을 해결하고 요구되어지는 추력값과 연료유량을 증가시키기 위하여 고체연료의 표면적을 증가시킬 필요가 있다. 기존의 하이브리드 엔진에서는 연료 그레인에 다수의 연소포트를 만들어 표면적을 증가시켰으나 이는 비 활용 공간의 증가와 추진제의 질량 및 체적분율의 상당한 감소를 초래한다. 지난 수십년간에 걸쳐 하이브리드 엔진에서 연료의 regression 특성 및 엔진 성능 향상을 위한 연구가 계속되어 왔으며 최근에 엔진의 체적 규제를 경감시키고 연료의 regression율을 향상시키기 위하여 선회유동을 이용하는 하이브리드 로켓 엔진들이 제안되고 있다. 이러한 선회유동을 가지는 하이브리드 로켓은 고체연료 그레인에 대하여 평행하게 유입되는 기존의 하이브리드 로켓에 비하여 고체연료 벽면에서의 대류열전달이 현저하게 증가하게 되어 아주 높은 고체연료의 regression율을 얻을 수 있는 이점이 있다. 선회유동 하이브리드 로켓의 연소과정은 고체 연료의 열분해과정, 대류 열전달, 난류 혼합, 난류와 화학반응의 상호작용, soot의 생성 및 산화과정, soot 입자 및 연소가스에 의한 복사 열전달, 연소장과 음향장의 상호작용 등의 복잡한 물리적 과정을 포함하고 있다. 이러한 물리적 과정 중 난류연소, 고체연료 벽면 근방에서의 대류 열전달 및 연소과정에서 생성되는 soot 입자로부터의 복사 열전달, 그리고 고체연료 열 분해시 표면반응들은 고체연료의 regression율에 큰 영향을 미친다. 특히 고체연료의 난류화염면의 위치와 폭, 그리고 비 예혼합 난류화염장에서 생성되는 soot의 체적분율의 예측은 난류연소모델, 열전달 모델, 그리고 regression율 모델에 의해 크게 영향을 받기 때문에 수치모델의 예측 능력 향상시키기 위하여 이러한 물리적 과정을 정확히 모델링해야 할 필요가 있다. 특히 vortex hybrid rocket내의 난류연소과정은 아래와 같은 Laminar Flamelet Model에 의해 모델링 하였다. 상세 화학반응 과정을 고려한 혼합분율 공간에서의 화염편의 화학종 및 에너지 보존 방정식은 다음과 같다. 화염편 방정식과 혼합분률과 scalar dissipation rate의 관계식을 이용하여 혼합분률과 scalar dissipation rate에 따른 모든 reactive scalar들을 구하게 된다. 이러한 화염편 방정식들을 mixture fraction space에서 이산화시켜서 얻은 비선형 대수방정식은 TWOPNT(Grcar, 1992)로 계산돼 flamelet Library에 저장되게 된다. 저장된 laminar flamelet library를 이용하여 난류화염장의 열역학 상태량 평균치는 presumed PDF approach에 의해 구해진다. 본 연구에서는 강한 선회유동을 가지는 Hybrid Rocket 연소장내의 난류와 화학반응의 상호작용을 분석하기 위하여 Laminar Flamelet Model, 화학평형모델, 그리고 Eddy Dissipation Model을 이용한 수치해석결과를 체계적으로 비교하였다. 또한 Laminar Flamelet Model과 state-of-art 물리모델들을 이용하여 선회 유동을 갖는 하이브리드 로켓 엔진의 연소 및 Soot 생성 및 산화과정을 살펴보았으며 복사 열전달이 고체 연료 표면의 regression율에 미치는 영향도 살펴보았다. 특히 swirl강도, 산화제의 유입위치 그리고 선회유동의 형성방식이 하이브리드 로켓의 연소특성 및 regression rate에 미치는 영향을 상세히 해석하였다.

  • PDF

A Study on Motion of Single Ball with Low Reynolds Number at Performed Interface Layers (액상 계면층을 이용한 저 레이놀즈수 단일강구의 운동연구)

  • 김시영
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.3
    • /
    • pp.117-126
    • /
    • 1987
  • The author has analysed profile of flow in rear of motion with single ball with low Reynolds number performed interface layers. For each system whose viscosity of the lower phase is as large as or large that of the upper phase, the profile has based on the thickness of the ball in the lower phase is nearly independent of both the ball single and the physical properties of the upper phase of the solution. The examine of the characteristics between Darwin's total displacement of the fluid and data obtained in this study, the averaged volume of each cases was corrected by the viscosity in the lower phase. When the viscosity in the lower phase is less than that of the upper phase, the volume based on the displacement of the fluid in rear region of ball are influenced by both ball size and the viscosity ratio of the upper phase to the lower phase. In the range of the Reynolds number less than a constant values, the volume ratio is influenced by both Reynolds number and Moltion number but mainly Reynolds. In range of Reynolds number over than the value, the volume ratio is independent of Reynolds number, but influenced by Moltion number.

  • PDF

Experimental Study on the Operating Characteristics of the Organic Rankine Cycle (ORC 시스템의 운전 특성에 관한 실험연구)

  • Eom, Hong Sun;Yoon, Cheon Seog;Kim, Young Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.4
    • /
    • pp.208-215
    • /
    • 2013
  • An experimental study of an ORC (Organic Rankine Cycle) system has been performed for small-scale applications in the range of a few kW for low-grade-recovery heat sources. The ORC system was equipped with a scroll expander. Experimental tests were carried out using this system, and showed good performance and reliability for the small-scale system. The effects of various operating conditions were selected as the main parameters for the performance of ORC system, such as the expander speeds and mass flow rates of R-134a for expander inlet temperatures ranging from $100^{\circ}C$ to $190^{\circ}C$, as well as the thermal power, thermal efficiency, expansion efficiency, and volumetric efficiency.

Development of Pulsating Heat Pipe type Waste Heat Recovery Ventilator Using an used Radiator for Vehicles (자동차용(自動車用) 폐(廢) 라디에이터를 이용한 히트 파이프형 환기배열(換氣排熱) 회수기(回收器)에 관한 연구(硏究))

  • Im, Yong-Bin;Choi, Sang-Joe;Kim, Jeong-Hoon;Kim, Jong-Soo
    • Resources Recycling
    • /
    • v.15 no.3 s.71
    • /
    • pp.30-37
    • /
    • 2006
  • For keeping the indoor air quality, we develop the pulsating heat pipe(PHP) type heat recovery ventilator using an used radiator for vehicles. We compare the PHP type with existing model. There are some merits that are able to change the unit number according to heat load and show us the similar performance to existing models.