• 제목/요약/키워드: 자질 선정

검색결과 28건 처리시간 0.124초

문서측 자질선정을 이용한 고속 문서분류기의 성능향상에 관한 연구 (Improving the Performance of a Fast Text Classifier with Document-side Feature Selection)

  • 이재윤
    • 정보관리연구
    • /
    • v.36 no.4
    • /
    • pp.51-69
    • /
    • 2005
  • 문서분류에 있어서 분류속도의 향상이 중요한 연구과제가 되고 있다. 최근 개발된 자질값투표 기법은 문서자동분류 문제에 대해서 매우 빠른 속도를 가졌지만, 분류정확도는 만족스럽지 못하다. 이 논문에서는 새로운 자질선정 기법인 문서측 자질선정 기법을 제안하고, 이를 자질값투표 기법에 적용해 보았다. 문서측 자질선정은 일반적인 분류자질선정과 달리 학습집단이 아닌 분류대상 문서의 자질 중 일부만을 선택하여 분류에 이용하는 방식이다. 문서측 자질선정을 적용한 실험에서는, 간단하고 빠른 자질값투표 분류기로 SVM 분류기만큼 좋은 성능을 얻을 수 있었다.

자질값투표 기법과 문서측 자질 선정을 이용한 고속 문서 분류기 (A Fast Text Classifier with feature Value Voting and Document-Side Feature Selection)

  • 이재윤
    • 한국정보관리학회:학술대회논문집
    • /
    • /
    • pp.71-78
    • /
    • 2005
  • 빠르면서도 정확한 문서 자동분류를 위해서 자질값투표 기법과 문서측 자질선정 방식의 결합을 제안하였다. 자질값은 미리 학습된 분류자질과 분류범주간의 연관성을 뜻하는 것으로서, 자질값투표 기법은 분류대상 문서에 나타난 자질들의 자질값을 후보범주마다 합산하여 가장 높은 범주로 분류하는 것이다. 문서측 자질선정은 일반적인 분류자질선정과 달리 학습집단이 아닌 분류대상 문서의 자질 중 일부만을 선택하여 분류에 이용하는 방식이다. 이들을 결합하여 사용한 결과 실험환경에서는 나이브베이즈 분류기만큼 간단하고 빠르면서 SVM 분류기보다 좋은 성능을 보였다.

  • PDF

한글 웹 문서 클러스터링 성능향상을 위한 자질선정 기법 비교 연구 (A Comparative Study of Feature Selection Methods for Korean Web Documents Clustering)

  • 김영기
    • 한국문헌정보학회지
    • /
    • v.39 no.1
    • /
    • pp.45-58
    • /
    • 2005
  • 이 연구는 한글 웹 문서를 클러스터링 하기 위한 자질 선정 방법에 대한 비교연구이다. 이 연구에는 두 개의 코퍼스가 사용되었다. 클러스터링을 위한 실험 문서는 Naver의 자연과학 범주에서, 자질 선정을 위한 학습문서는 Yahoo Korea의 같은 범주에서 수집하였다. 우선 실험 문서를 단어자질과 동시링크, 그리고 이 둘을 혼합한 방법으로 클러스터링 한 다음 그 성능을 비교하였다. 다음으로 학습문서에서 카이제곱 통계량$(X^2)$, 정보획득량(IG), 그리고 상호정보량(MI)을 이용하여 용어자질을 선정한 다음. 이를 실험문서에 적용하여 클러스터링 성능을 비교하였다. 석기에 각 범주별로 최댓값을 갖는 용어들만을 해당 범주를 대표하는 자질로 선정하는 '최댓간 자질 선정기법'을 실험적으로 도입하여 적용해 보았다. 실험 결과 사용된 자질에 따른 한글 웹 문서 클러스터링 정확률은 자연어 $ 72.3\%$, 동시링크 $74.3\%$, 단어-링크 혼합 $74.8\%$, $X^2\;79.6\%\;Max\;X^2\;83.8\%$로 나타났다. 전통적 자질 선정 기법 중에서는 $X^2$가 약간 나은 성능을 보여 주었지만 큰 차이는 발견되지 않았다. 그러나 최댓값 자질 선정기법을 적용하였을 때 클러스터링 성능은 크게 향상되었다. 이 논문에서 제안된 최댓간 자질 선정 기법은 웹 문서의 자질 공간 축소와 한글 웹 문서의 클러스터링을 위한 간단하면서도 효과적인 수단이다.

자질 선정 기준과 가중치 할당 방식간의 관계를 고려한 문서 자동분류의 개선에 대한 연구 (An Empirical Study on Improving the Performance of Text Categorization Considering the Relationships between Feature Selection Criteria and Weighting Methods)

  • 이재윤
    • 한국문헌정보학회지
    • /
    • v.39 no.2
    • /
    • pp.123-146
    • /
    • 2005
  • 이 연구에서는 문서 자동분류에서 분류자질 선정과 가중치 할당을 위해서 일관된 전략을 채택하여 kNN 분류기의 성능을 향상시킬 수 있는 방안을 모색하였다. 문서 자동 분류에서 분류자질 선정 방식과 자질 가중치 할당 방식은 자동분류 알고리즘과 함께 분류성능을 좌우하는 중요한 요소이다. 기존 연구에서는 이 두 방식을 결정할 때 상반된 전략을 사용해왔다. 이 연구에서는 색인파일 저장공간과 실행시간에 따른 분류성능을 기준으로 분류자질 선정 결과를 평가해서 기존 연구와 다른 결과를 얻었다. 상호정보량과 같은 저빈도 자질 선호 기준이나 심지어는 역문헌빈도를 이용해서 분류 자질을 선정하는 것이 kNN 분류기의 분류 효과와 효율 면에서 바람직한 것으로 나타났다. 자질 선정기준으로 저빈도 자질 선호 척도를 자질 선정 및 자질 가중치 할당에 일관되게 이용한 결과 분류성능의 저하 없이 kNN 분류기의 처리 속도를 약 3배에서 5배정도 향상시킬 수 있었다.

문헌빈도와 장서빈도를 이용한 kNN 분류기의 자질선정에 관한 연구 (A Study on Feature Selection for kNN Classifier using Document Frequency and Collection Frequency)

  • 이용구
    • 한국도서관정보학회지
    • /
    • v.44 no.1
    • /
    • pp.27-47
    • /
    • 2013
  • 이 연구에서는 자동 색인을 통해 쉽게 얻을 수 있는 자질의 문헌빈도와 장서빈도를 이용하여 자동분류에서 자질 선정 기법을 kNN 분류기에 적용하였을 때, 어떠한 분류성능을 보이는지 알아보고자 하였다. 실험집단으로 한국일보-20000(HKIB-20000)의 일부를 이용하였다. 실험 결과 첫째, 장서빈도를 이용하여 고빈도 자질을 선정하고 저빈도 자질을 제거한 자질선정 방법이 문헌빈도보다 더 좋은 성능을 가져오는 것으로 나타났다. 둘째, 문헌빈도와 장서빈도 모두 저빈도 자질을 우선으로 선정하는 방법은 좋은 분류성능을 가져오지 못했다. 셋째, 장서빈도와 같은 단순빈도에서 자질 선정 구간을 조정하는 것이 문헌빈도와 장서빈도의 조합보다 더 좋은 성능을 가져오는 것으로 나타났다.

단어 중의성 해소를 위한 지도학습 방법의 통계적 자질선정에 관한 연구 (A Study on Statistical Feature Selection with Supervised Learning for Word Sense Disambiguation)

  • 이용구
    • 한국비블리아학회지
    • /
    • v.22 no.2
    • /
    • pp.5-25
    • /
    • 2011
  • 이 연구는 지도학습 방법을 이용한 단어 중의성 해소가 최적의 성능을 가져오는 통계적 자질선정 방법과 다양한 문맥의 크기를 파악하고자 하였다. 실험집단인 한글 신문기사에 자질선정 기준으로 정보획득량, 카이제곱 통계량, 문헌빈도, 적합성 함수 등을 적용하였다. 실험 결과, 텍스트 범주화 기법과 같이 단어 중의성 해소에서도 자질선정 방법이 매우 유용한 수단이 됨을 알 수 있었다. 실험에 적용한 자질선중 기준 중에 정보획득량이 가장 좋은 성능을 보였다. SVM 분류기는 자질집합 크기와 문맥 크기가 클수록 더 좋은 성능을 보여 자질선정에 영향을 받지 않았다. 나이브 베이즈 분류기는 10% 정도의 자질집합 크기에서 가장 좋은 성능을 보였다. kNN의 경우 10% 이하의 자질에서 가장 좋은 성능을 보였다. 단어 중의성 해소를 위한 자질선정을 적용할 때 작은 자질집합 크기와 큰 문맥 크기를 조합하거나, 반대로 큰 자질집합 크기와 작은 문맥 크기를 조합하면 성능을 극대화 할 수 있다.

잠재의미색인(LSI) 기법을 이용한 kNN 분류기의 자질 선정에 관한 연구 (Evaluation of the Feature Selection function of Latent Semantic Indexing(LSI) Using a kNN Classifier)

  • 박부영;정영미
    • 한국정보관리학회:학술대회논문집
    • /
    • /
    • pp.163-166
    • /
    • 2004
  • 텍스트 범주화에 관한 선행연구에서 자주 사용되면서 좋은 성능을 보인 자질 선정 기법은 문헌빈도와 카이제곱 통계량 등이다. 그러나 이들은 단어 자체가 갖고 있는 모호성은 제거하지 못한다는 단점이 있다. 본 연구에서는 kNN 분류기를 이용한 범주화 실험에서 단어간의 상호 관련성이 자동적으로 유도됨으로써 단어 자체 보다는 단어의 개념을 분석하는 잠재의미색인 기법을 자질 선정 방법으로 제안한다.

  • PDF

기계학습을 통한 디스크립터 자동부여에 관한 연구 (A Study on automatic assignment of descriptors using machine learning)

  • 김판준
    • 정보관리학회지
    • /
    • v.23 no.1
    • /
    • pp.279-299
    • /
    • 2006
  • 학술지 논문에 디스크립터를 자동부여하기 위하여 기계학습 기반의 접근법을 적용하였다. 정보학 분야의 핵심 학술지를 선정하여 지난 11년간 수록된 논문들을 대상으로 문헌집단을 구성하였고, 자질 선정과 학습집합의 크기에 따른 성능을 살펴보았다. 그 결과, 자질 선정에서는 카이제곱 통계량(CHI)과 고빈도 선호 자질 선정 기준들(COS, GSS, JAC)을 사용하여 자질을 축소한 다음, 지지벡터기계(SVM)로 학습한 결과가 가장 좋은 성능을 보였다. 학습집합의 크기에서는 지지벡터기계(SVM)와 투표형 퍼셉트론(VPT)의 경우에는 상당한 영향을 받지만 나이브 베이즈(NB)의 경우에는 거의 영향을 받지 않는 것으로 나타났다.

위키피디아를 이용한 분류자질 선정에 관한 연구 (An Experimental Study on Feature Selection Using Wikipedia for Text Categorization)

  • 김용환;정영미
    • 정보관리학회지
    • /
    • v.29 no.2
    • /
    • pp.155-171
    • /
    • 2012
  • 텍스트 범주화에 있어서 일반적인 문제는 문헌을 표현하는 핵심적인 용어라도 학습문헌 집합에 나타나지 않으면 이 용어는 분류자질로 선정되지 않는다는 것과 형태가 다른 동의어들은 서로 다른 자질로 사용된다는 점이다. 이 연구에서는 위키피디아를 활용하여 문헌에 나타나는 동의어들을 하나의 분류자질로 변환하고, 학습문헌 집합에 출현하지 않은 입력문헌의 용어를 가장 유사한 학습문헌의 용어로 대체함으로써 범주화 성능을 향상시키고자 하였다. 분류자질 선정 실험에서는 (1) 비학습용어 추출 시 범주 정보의 사용여부, (2) 용어의 유사도 측정 방법(위키피디아 문서의 제목과 본문, 카테고리 정보, 링크 정보), (3) 유사도 척도(단순 공기빈도, 정규화된 공기빈도) 등 세 가지 조건을 결합하여 실험을 수행하였다. 비학습용어를 유사도 임계치 이상의 최고 유사도를 갖는 학습용어로 대체하여 kNN 분류기로 분류할 경우 모든 조건 결합에서 범주화 성능이 0.35%~1.85% 향상되었다. 실험 결과 범주화 성능이 크게 향상되지는 못하였지만 위키피디아를 활용하여 분류자질을 선정하는 방법이 효과적인 것으로 확인되었다.

자질선정에 따른 Naive Bayesian 분류기의 성능 비교 (Performance Evaluation of a Naive Bayesian Classifier using various Feature Selection Methods)

  • 국민상;정영미
    • 한국정보관리학회:학술대회논문집
    • /
    • /
    • pp.33-36
    • /
    • 2000
  • 베이즈 확률을 이용한 분류기는 자동분류 초기부터 사용되어 아직까지 이 분야에서 가장 많이 사용되는 분류기 중 하나이다. 본 논문에서는 KTSET 문서에서 임의로 추출한 198건의 정보과학회 관련 논문의 제목 및 초록을 대상으로 베이즈 확률을 이용한 문서의 자동분류 실험을 수행하였으며, 더불어 Naive Bayesian 분류기에 가장 적합한 자질선정 방법을 찾고자 카이제곱 통계량, 상호정보량 및 기대상호정보량, 정보획득량, 역문헌빈도, 역카테고리빈도 등 6가지의 자질선정 기준을 실험하였다. 실험 결과는 카이제곱 통계량을 이용한 분류 실험의 성능이 가장 좋았고, 기대상호정보량과 정보획득량, 역카테고리빈도 또한 자질수에 큰 영향을 받지 않고 비교적 안정적인 성능을 보였다.

  • PDF