• Title/Summary/Keyword: 자질 생성

Search Result 102, Processing Time 0.029 seconds

Korean Sentence Classification System Using GloVe and Maximum Entropy Model (GloVe와 최대 엔트로피 모델을 이용한 한국어 문장 분류 시스템)

  • Park, IlNam;Choi, DongHyun;Shin, MyeongCheol;Kim, EungGyun
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.522-526
    • /
    • 2018
  • 본 연구는 수많은 챗봇이 생성될 수 있는 챗봇 빌더 시스템에서 저비용 컴퓨팅 파워에서도 구동 가능한 가벼운 문장 분류 시스템을 제안하며, 미등록어 처리를 위해 워드 임베딩 기법인 GloVe를 이용하여 문장 벡터를 생성하고 이를 추가 자질로 사용하는 방법을 소개한다. 제안한 방법으로 자체 구축한 테스트 말뭉치를 이용하여 성능을 평가해본 결과 최대 93.06% 성능을 보였으며, 자체 보유한 CNN 모델과의 비교 평가 결과 성능은 2.5% 낮지만, 모델 학습 속도는 25배, 학습 시 메모리 사용량은 6배, 생성된 모델 파일 크기는 302배나 효율성 있음을 보였다.

  • PDF

Past Tense Generation in Korean to French Machine Translation (한국어-프랑스어 자동번역을 위한 과거시제 선어말어미 '-었'의 처리방안)

  • Lim, Seunghee;Noh, Ran;Hong, Munpyo
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.173-174
    • /
    • 2014
  • 본 연구는 현재 개발 진행 중인 다국어 자동통번역시스템에서 발생하는 한국어 과거시제 선어말어미 '-었'의 생성문제를 다루었다. 한국어 과거시제 선어말 어미는 영어와 독일어의 경우에는 대부분 단순과거형으로 생성될 수 있으나, 프랑스어의 경우에는 복합과거의 형식과 반과거의 형식 중 하나를 선택해야 하는 문제가 발생한다. 본 연구에서는 이러한 문제의 해결을 위해 한-프랑스어 코퍼스 분석을 통해 복합과거와 반과거의 올바른 생성을 위한 네 가지의 자질을 선정하였고, 이에 SVM 알고리즘을 적용한 분류기를 구현하였다. 현재까지의 실험결과는 84.45%의 정확률이며 현재 성능개선을 위한 연구가 계속 진행 중이다.

  • PDF

Semi-Automatic Building of Korean Classifiers in English-Korean MT (영한 자동번역에서의 한국어 분류사의 반자동 구축 방법)

  • Lee, Ki-Young;Choi, Sung-Kwon;Kim, Young-Gil
    • Annual Conference on Human and Language Technology
    • /
    • 2008.10a
    • /
    • pp.135-139
    • /
    • 2008
  • 본 논문은 영한 기계번역에서 영어 수사가 포함된 영어 명사구를 한국어로 번역할 때, 영어 명사에 대응되는 한국어 명사의 적절한 분류사를 반자동으로 구축하는 방법에 대해 기술한다. 영한 번역의 측면에서, 분류사는 목표언어인 한국어에서만 나타나는 현상이다. 따라서 영어를 한국어로 번역할 때, 적절한 분류사를 생성하지 않으면 한국어 어법에 맞지 않는 부자연스러운 번역 결과를 생성한다. 본 논문에서는 한국어 태그드 코퍼스와 한국어 의미코드 체계에 따라 한국어 분류사를 반자동으로 구축하는 방법을 제안한다. 제안하는 방법에 따라 한국어 명사에 대해서 한국어 분류사가 구축되었으며, 이렇게 구축된 분류사는 영한 기계번역시스템의 번역 사전에 'KCOUNT'라는 자질을 할당하여 부가하였다. 제안하는 방법의 검증을 위해 수동평가와 자동평가를 수행하였으며, 그 결과, 영한 기계번역의 문장 생성에 있어서 자연스러움(fluency)의 측면에서 번역률 향상이 있었다.

  • PDF

Statistical Generation of Korean Chatting Sentences Using Multiple Feature Information (복합 자질 정보를 이용한 통계적 한국어 채팅 문장 생성)

  • Kim, Jong-Hwan;Chang, Du-Seong;Kim, Hark-Soo
    • Korean Journal of Cognitive Science
    • /
    • v.20 no.4
    • /
    • pp.421-437
    • /
    • 2009
  • A chatting system is a computer program that simulates conversations between a human and a computer using natural language. In this paper, we propose a statistical model to generate natural chatting sentences when keywords and speech acts are input. The proposed model first finds Eojeols (Korean spacing units) including input keywords from a corpus, and generate sentence candidates by using appearance information and syntactic information of Eojeols surrounding the found Eojeols. Then, the proposed model selects one among the sentence candidates by using a language model based on speech act information, co-occurrence information between Eojeols, and syntactic information of each Eojeol. In the experiment, the proposed model showed the better correct sentence generation rate of 86.2% than a previous conventional model based on a simple language model.

  • PDF

Text Categorization Using a Helmholtz Machine (Helmholtz Machine 학습에 기반한 문서 분류)

  • 장정호;장병탁;김영택
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.466-468
    • /
    • 2000
  • 이 논문에서는 Helmholtz machine을 사용하여 데이터의 분포 추정을 함으로써 문서 분류기를 학습하는 방법 제안한다. Helmholtz machine 은 생성 모델과 인식 모델로 구성된 그래프 모델로서, 그래프 모델에서의 분포 추정을 보다 가능하게 하기 위한 근사 방법 중의 하나이다. Helmholtz machine에서의 각 입력 노드는 문서를 구성하는 하나의 단어에 대응하는 이진 노드이다. 입력 노드의 개수가 많아지면 그만큼 학습 시간이 증가하기 때문에, 학습 시간을 줄이면서 적정 수준의 성능을 유지하기 위해 자질 선정이 필요하다. 이러한 요구 사항을 충족시키기 위해 정보획득량(information gain)기준을 이용하였으며, 뉴스 그룹 데이터에 대해 그 성능을 측정하고 Naive Bayes를 이용한 것과 비교한다.

  • PDF

Sequence-to-sequence based Morphological Analysis and Part-Of-Speech Tagging for Korean Language with Convolutional Features (Sequence-to-sequence 기반 한국어 형태소 분석 및 품사 태깅)

  • Li, Jianri;Lee, EuiHyeon;Lee, Jong-Hyeok
    • Journal of KIISE
    • /
    • v.44 no.1
    • /
    • pp.57-62
    • /
    • 2017
  • Traditional Korean morphological analysis and POS tagging methods usually consist of two steps: 1 Generat hypotheses of all possible combinations of morphemes for given input, 2 Perform POS tagging search optimal result. require additional resource dictionaries and step could error to the step. In this paper, we tried to solve this problem end-to-end fashion using sequence-to-sequence model convolutional features. Experiment results Sejong corpus sour approach achieved 97.15% F1-score on morpheme level, 95.33% and 60.62% precision on word and sentence level, respectively; s96.91% F1-score on morpheme level, 95.40% and 60.62% precision on word and sentence level, respectively.

Constructing for Korean Traditional culture Corpus and Development of Named Entity Recognition Model using Bi-LSTM-CNN-CRFs (한국 전통문화 말뭉치구축 및 Bi-LSTM-CNN-CRF를 활용한 전통문화 개체명 인식 모델 개발)

  • Kim, GyeongMin;Kim, Kuekyeng;Jo, Jaechoon;Lim, HeuiSeok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.47-52
    • /
    • 2018
  • Named Entity Recognition is a system that extracts entity names such as Persons(PS), Locations(LC), and Organizations(OG) that can have a unique meaning from a document and determines the categories of extracted entity names. Recently, Bi-LSTM-CRF, which is a combination of CRF using the transition probability between output data from LSTM-based Bi-LSTM model considering forward and backward directions of input data, showed excellent performance in the study of object name recognition using deep-learning, and it has a good performance on the efficient embedding vector creation by character and word unit and the model using CNN and LSTM. In this research, we describe the Bi-LSTM-CNN-CRF model that enhances the features of the Korean named entity recognition system and propose a method for constructing the traditional culture corpus. We also present the results of learning the constructed corpus with the feature augmentation model for the recognition of Korean object names.

Detection of Abnormal Dam Water Level Data Based on Machine Learning (기계학습에 기반한 댐 수위 이상 데이터 탐지)

  • Bang, Suil;Lee, Do-Gil
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.293-296
    • /
    • 2021
  • K-water에서는 다목적댐의 관리를 위해 실시간으로 댐수위, 하천 수위 및 강우량 등을 계측하고 있으며, 계측된 값들은 댐을 효과적으로 운영하는데 필요한 데이터로 활용되고 있다. 특히 댐수위 이상 데이터를 탐지하지 못한 채 그대로 사용할 경우 댐의 방류 시기와 방류량 등을 결정하는 중요한 의사결정을 그르칠 수 있으므로 이를 신속히 탐지하는 것이 매우 중요하다. 현재의 자동화된 이상 데이터 탐지방법 중 하나는 현재 데이터가 최댓값과 최솟값을 초과할 때, 다른 하나는 현재 데이터와 일정 시간 동안의 평균값 간의 차이가 관리자가 정한 특정 값을 벗어났을 때를 기준으로 삼고 있다. 전자는 상한과 하한의 초과 여부만 판단하므로 탐지가 쉬우나 정상범위 내에서 발생한 이상 데이터는 탐지가 불가하다. 후자는 관리자의 경험을 통해 판단 조건을 정하기 때문에 객관성이 결여되는 문제가 있다. 특히 방류와 강우가 복합적으로 댐수위에 영향을 미치는 홍수기에 관리자의 경험에 기초한 이상 데이터 판별은 신뢰성의 문제가 있을 수 있다. 따라서 본 연구에서는 기계학습을 최초로 적용하여 이상 데이터를 탐지하고자 하였다. 댐수위, 누적강우량 및 누적방류량 데이터와 댐수위데이터를 가공하여 생성한 댐수위차, 댐수위차평균, 댐수위평균 등 자질들의 다양한 조합을 만든 후 이를 Random Forest, SVM, AdaptiveBoost 및 다층퍼셉트론(MLP) 등과 같은 여러 가지 기계학습모델 등을 통해 이상 데이터를 판별하는 실험(분류)을 하였다. 실험결과 댐수위, 댐수위차, 댐수위-댐수위평균, 누적강우량, 누적방류량 및 댐수위차평균을 사용하였을 때 MLP에서 가장 우수한 성능을 보였다. 이 연구를 통해서 댐수위 이상 데이터를 기계학습의 분류기능을 통해 효과적으로 탐지할 수 있다는 것과 모델의 성능은 실험에 사용한 자질의 수뿐 아니라 자질의 종류에도 큰 영향을 받는다는 것을 알 수 있었다.

A Study on Development of Automatic Categorization System for Internet Documents (인터넷 문서 자동 분류 시스템 개발에 관한 연구)

  • Han, Kwang-Rok;Sun, B.K.;Han, Sang-Tae;Rim, Kee-Wook
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.9
    • /
    • pp.2867-2875
    • /
    • 2000
  • In this paper, we discuss the implementation of automatic internet text categorization system. A categorization algorithm is designed and the system is implemented by back propagation learning model. Internet documents are collected according to the established categories and tested by Chi-squre ($\chi^2$) for the document leaning, and the category features are extracted. The sets of learning and separating vector are productt>d by these features. As a result of experimental evaluation, we show that this system is more improved in the performance of automatic categorization than the nearest neigbor method.

  • PDF

A Machine Learning based Method for Measuring Inter-utterance Similarity for Example-based Chatbot (예제 기반 챗봇을 위한 기계 학습 기반의 발화 간 유사도 측정 방법)

  • Yang, Min-Chul;Lee, Yeon-Su;Rim, Hae-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.3021-3027
    • /
    • 2010
  • Example-based chatBot generates a response to user's utterance by searching the most similar utterance in a collection of dialogue examples. Though finding an appropriate example is very important as it is closely related to a response quality, few studies have reported regarding what features should be considered and how to use the features for similar utterance searching. In this paper, we propose a machine learning framework which uses various linguistic features. Experimental results show that simultaneously using both semantic features and lexical features significantly improves the performance, compared to conventional approaches, in terms of 1) the utilization of example database, 2) precision of example matching, and 3) the quality of responses.