• Title/Summary/Keyword: 자질추출

Search Result 218, Processing Time 0.021 seconds

Factor Analysis of TQM in Medical Library (의학도서관의 총체적 질 관리(TQM) 요인분석)

  • Kim Seonghee;Jung Eun-Ah
    • Journal of Korean Library and Information Science Society
    • /
    • v.36 no.2
    • /
    • pp.307-325
    • /
    • 2005
  • The paper examined and analyzed the factors affecting TQM in Medical libraries. The questionnaire was used for collecting data and the ANOVA and T-TEST were used for analyzing data. The results showed that librarians positively recognize the need of TQM in Medical libraries. However, the results showed that library system needs to improve the reward system for effective performance of the work. Finally, this study showed that librarians need to be well-qualified person as a professional with the CEO of strong leadership for successful TQM.

  • PDF

Question Classification Based on Word Association for Question and Answer Archives (질문대답 아카이브에서 어휘 연관성을 이용한 질문 분류)

  • Jin, Xueying;Lee, Kyung-Soon
    • The KIPS Transactions:PartB
    • /
    • v.17B no.4
    • /
    • pp.327-332
    • /
    • 2010
  • Word mismatch is the most significant problem that causes low performance in question classification, whose questions consist of only two or three words that expressed in many different ways. So, it is necessary to apply word association in question classification. In this paper, we propose question classification method using translation-based language model, which use word translation probabilities for question-question pair that is learned in the same category. In the experiment, we prove that translation probabilities of question-question pairs in the same category is more effective than question-answer pairs in total collection.

Tree Tagging Tool using Two-phrase Parsing (2단계 구문분석을 이용한 구문분석 말뭉치 구축도구)

  • Kim, Hye-Kyum;Park, Kyung-Mi;Yoon, Yeo-Chan;Rim, Hae-Chang;Park, So-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2005.10a
    • /
    • pp.151-158
    • /
    • 2005
  • 본 논문에서는 2단계 구문분석을 통한 구문분석 말뭉치 구축도구를 제안한다. 제안하는 방법은 대량의 구문분석 말뭉치를 수동으로 구축할 때 요구되는 작성자의 수작업을 줄이는 것을 목적으로 한다. 도구는 입력 문장을 문장 분할기준에 따라 분할하는 문장 분할 단계, 각 부분에 대해 자동 구문분석을 수행하는 부분 구문구조 생성 단계, 각 부분 구문구조를 통합하여 완전한 구문구조를 얻는 부분 통합 단계로 이루어져 있다. 자동 구문분석은 자질기반 한국어 구문분석모델을 이용하였고 문장을 부분으로 분할할 때는 문장 분할기준을 말뭉치에서 자동추출 하고 간단한 검증을 거쳐 적용하는 방법을 택하였다. 구문분석 말뭉치 구축의 각 단계에서 자동 구문 분석기가 출력한 결과를 작성자가 취소, 재구축 가능하게 하였다.

  • PDF

Kernelized Structure Feature for Discriminating Meaningful Table from Decorative Table (장식 테이블과 의미 있는 테이블 식별을 위한 커널 기반의 구조 자질)

  • Son, Jeong-Woo;Go, Jun-Ho;Park, Seong-Bae;Kim, Kweon-Yang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.618-623
    • /
    • 2011
  • This paper proposes a novel method to discriminate meaningful tables from decorative one using a composite kernel for handling structural information of tables. In this paper, structural information of a table is extracted with two types of parse trees: context tree and table tree. A context tree contains structural information around a table, while a table tree presents structural information within a table. A composite kernel is proposed to efficiently handle these two types of trees based on a parse tree kernel. The support vector machines with the proposed kernel dised kuish meaningful tables from the decorative ones with rich structural information.

Component Analysis for Constructing an Emotion Ontology (감정 온톨로지의 구축을 위한 구성요소 분석)

  • Yoon, Aesun;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.19-24
    • /
    • 2009
  • 의사소통에서 대화자 간 감정의 이해는 메시지의 내용만큼이나 중요하다. 비언어적 요소에 의해 감정에 관한 더 많은 정보가 전달되고 있기는 하지만, 텍스트에도 화자의 감정을 나타내는 언어적 표지가 다양하고 풍부하게 녹아 들어 있다. 본 연구의 목적은 인간언어공학에 활용할 수 있는 감정 온톨로지를 설계하는 데 있다. 텍스트 기반 감정 처리 분야의 선행 연구가 감정을 분류하고, 각 감정의 서술적 어휘 목록을 작성하고, 이를 텍스트에서 검색함으로써, 추출된 감정의 정확도가 높지 않았다. 이에 비해, 본 연구에서 제안하는 감정 온톨로지는 다음과 같은 장점을 갖는다. 첫째, 감정 표현의 범주를 기술 대상(언어적 vs. 비언어적)과 방식(표현적, 서술적, 도상적)으로 분류하고, 이질적 특성을 갖는 6개 범주 간 상호 대응관계를 설정함으로써, 멀티모달 환경에 적용할 수 있다. 둘째, 세분화된 감정을 분류할 수 있되, 감정 간 차별성을 가질 수 있도록 24개의 감정 명세를 선별하고, 더 섬세하게 감정을 분류할 수 있는 속성으로 강도와 극성을 설정하였다. 셋째, 텍스트에 나타난 감정 표현을 명시적으로 구분할 수 있도록, 경험자 기술 대상과 방식 언어적 자질에 관한 속성을 도입하였다. 이때 본 연구에서 제안하는 감정 온톨로지가 한국어 처리에 국한되지 않고, 다국어 처리에 활용할 수 있도록 확장성을 고려했다.

  • PDF

Processing Korean Passives for Database Semantics (데이터베이스 의미론을 위한 한국어 피동형의 전산적 처리)

  • Hong, Jung-Ha;Choe, Seung-Chul;Lee, Ki-Yong
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.411-418
    • /
    • 2000
  • Hausser (1999)와 이기용 (1999a, 1999c)에서는 데이터베이스 관리 시스템(DBMS)을 이용하여 자연언어의 의미를 다루는 데이터베이스 의미론을 제안하였다. 특히 이기용 (1999c)에서는 수형도(tree), 논리 형태(logical fomulas), 자질 구조(feature structure)와 같은 다양한 언어 표상 형식들을 관계형 데이터베이스 관리 시스템(RDBMS)의 표상 형식인 테이블 형식으로 전환 가능함을 보임으로써 데이터베이스 의미론에 관계형 데이터 베이스 관리 시스템을 도입할 수 있음을 제시하였다. 한편, Lee (2000)에서 제시한 데이터베이스 의미론 모형에서는 데이터베이스 관리 시스템과 사용자(end-user)를 연결하는 언어 정보 처리 시스템(LIPS; Linguistic Information Processing System)을 제안하였다. 이 언어정보 처리 시스템은 사용자에 의해 입력된 언어 자료를 처리하여 그 분석 결과를 데이터베이스 관리 시스템에 전달하고, 이를 통해 구축된 데이터베이스에서 추출한 정보를 다시 사용자에게 전달하는 시스템이다. 이 논문은 한국어 '이, 히, 리, 기' 피동형을 전산처리를 할 수 있도록, 데이터베이스 의미론에서 핵심 요소인 언어정보 처리 시스템과 데이터베이스 관리 시스템을 구현하는 것 이 목적이다.

  • PDF

Detecting errors on Korean POS tagged corpus using GMM (GMM을 이용한 품사 부착 말뭉치의 오류 탐지)

  • Choi, Min-Seok;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-Min;Yoon, Ho;Namgoong, Young;Kim, Jae-Kyun;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.246-251
    • /
    • 2019
  • 품사 부착 말뭉치란 문장에 포함된 각 단어에 품사 표지를 부착한 말뭉치를 말한다. 이런 말뭉치에는 다양한 형태의 오류들이 포함되어 있으며, 오류가 포함된 말뭉치를 학습 자료로 사용하는 자연언어처리 시스템의 좋은 성능을 기대할 수 없다. 따라서 말뭉치의 일관성이나 정확도는 자연언어처리 시스템의 성능에 많은 영향을 준다. 하지만 말뭉치 구축 과정에서 작업자의 실수가 발생하고 여러 작업자가 작업을 수행하다 보니 일관성을 유지하기가 쉽지 않다. 본 논문에서는 이러한 문제를 해결하기 위해서 GMM을 이용한 군집화를 수행하여 오류 후보를 추출한다. 이를 통해서 말뭉치 구축 과정에서 작업자의 실수를 방지하고 일관성을 유지하고자 한다. 세종품사부착 말뭉치를 대상으로 임의로 오류를 유발시켜 실험한 결과, 재현율 84.74%의 성능으로 오류를 탐지하였다. 향후에 좀 더 높은 재현율을 위해서 자질 확장이나 회귀 분석 방법 등을 추진할 계획이다.

  • PDF

Explicit Feature Extraction(EFE) Reasoner: A model for Understanding the Relationship between Numbers by Size (숫자의 대소관계 파악을 위한 Explicit Feature Extraction(EFE) Reasoner 모델)

  • Jisu An;Taywon Min;Gahgene Gweon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.23-26
    • /
    • 2023
  • 본 논문에서는 서술형 수학 문제 풀이 모델의 숫자 대소관계 파악을 위한 명시적 자질추출방식 Explicit Feature Extraction(EFE) Reasoner 모델을 제안한다. 서술형 수학 문제는 자연현상이나 일상에서 벌어지는 사건을 수학적으로 기술한 문제이다. 서술형 수학 문제 풀이를 위해서는 인공지능 모델이 문장에 함축된 논리를 파악하여 수식 또는 답을 도출해야 한다. 때문에 서술형 수학 문제 데이터셋은 인공지능 모델의 언어 이해 및 추론 능력을 평가하는 지표로 활용되고 있다. 기존 연구에서는 문제를 이해할 때 숫자의 대소관계를 파악하지 않고 문제에 등장하는 변수의 논리적인 관계만을 사용하여 수식을 도출한다는 한계점이 존재했다. 본 논문에서는 자연어 이해계열 모델 중 SVAMP 데이터셋에서 가장 높은 성능을 내고 있는 Deductive-Reasoner 모델에 숫자의 대소관계를 파악할 수 있는 방법론인 EFE 를 적용했을 때 RoBERTa-base 에서 1.1%, RoBERTa-large 에서 2.8%의 성능 향상을 얻었다. 이 결과를 통해 자연어 이해 모델이 숫자의 대소관계를 이해하는 것이 정답률 향상에 기여할 수 있음을 확인한다.

Terminology Recognition System based on Machine Learning for Scientific Document Analysis (과학 기술 문헌 분석을 위한 기계학습 기반 범용 전문용어 인식 시스템)

  • Choi, Yun-Soo;Song, Sa-Kwang;Chun, Hong-Woo;Jeong, Chang-Hoo;Choi, Sung-Pil
    • The KIPS Transactions:PartD
    • /
    • v.18D no.5
    • /
    • pp.329-338
    • /
    • 2011
  • Terminology recognition system which is a preceding research for text mining, information extraction, information retrieval, semantic web, and question-answering has been intensively studied in limited range of domains, especially in bio-medical domain. We propose a domain independent terminology recognition system based on machine learning method using dictionary, syntactic features, and Web search results, since the previous works revealed limitation on applying their approaches to general domain because their resources were domain specific. We achieved F-score 80.8 and 6.5% improvement after comparing the proposed approach with the related approach, C-value, which has been widely used and is based on local domain frequencies. In the second experiment with various combinations of unithood features, the method combined with NGD(Normalized Google Distance) showed the best performance of 81.8 on F-score. We applied three machine learning methods such as Logistic regression, C4.5, and SVMs, and got the best score from the decision tree method, C4.5.

A Statistical Prediction Model of Speakers' Intentions in a Goal-Oriented Dialogue (목적지향 대화에서 화자 의도의 통계적 예측 모델)

  • Kim, Dong-Hyun;Kim, Hark-Soo;Seo, Jung-Yun
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.9
    • /
    • pp.554-561
    • /
    • 2008
  • Prediction technique of user's intention can be used as a post-processing method for reducing the search space of an automatic speech recognizer. Prediction technique of system's intention can be used as a pre-processing method for generating a flexible sentence. To satisfy these practical needs, we propose a statistical model to predict speakers' intentions that are generalized into pairs of a speech act and a concept sequence. Contrary to the previous model using simple n-gram statistic of speech acts, the proposed model represents a dialogue history of a current utterance to a feature set with various linguistic levels (i.e. n-grams of speech act and a concept sequence pairs, clue words, and state information of a domain frame). Then, the proposed model predicts the intention of the next utterance by using the feature set as inputs of CRFs (Conditional Random Fields). In the experiment in a schedule management domain, The proposed model showed the precision of 76.25% on prediction of user's speech act and the precision of 64.21% on prediction of user's concept sequence. The proposed model also showed the precision of 88.11% on prediction of system's speech act and the Precision of 87.19% on prediction of system's concept sequence. In addition, the proposed model showed 29.32% higher average precision than the previous model.