• Title/Summary/Keyword: 자질추출

Search Result 218, Processing Time 0.029 seconds

구문해석을 이용한 색인어 자동 주출 시스템

  • Han, Seong-Hyeon;Park, Hyeok-Ro;Choe, Gi-Seon;Kim, Gil-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1990.11a
    • /
    • pp.16-23
    • /
    • 1990
  • 본 논문에서는 자동 색인 시스템 구현에 있어서 형태소 해석뿐만 아니라 구문해석을 응용하면 통계적 방법이나, 간단한 단서에 의한 색인어 추출보다 훨씬 나은 색인어 추출이 가능하다는 것을 보이고 한국어 필수적이 색인어로써 충분한 자질이 있다는 제안을 한다. 또 시스템의 전체적인 흐름과 필수격 처리 과정, 예외적인 자유격의 처리 등에 대한 부분을 설명하고, 결론에서는 사람이 추출한 색인어와 본 시스템의 결과를 비교, 분석한다.

  • PDF

Automatically Registering Schedules from Text Messages on Handheld Devices (휴대폰 문자 메시지로부터 자동 일정 등록)

  • Kim, Hyung-Chul;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.86-93
    • /
    • 2010
  • 개인 휴대용 단말기의 보급률이 높아짐에 따라, SMS 메시지가 또 하나의 새로운 의사소통 수단으로 발전하였다. 특히 통화보다 가격이 저렴하고, 통화 후 따로 적어두지 않아도 자동으로 저장되는 특징으로 인해 약속 등을 정할 때 많은 도움이 된다. 본 논문은 일반적인 정보추출 방법을 적용하여 이러한 SMS 메시지에서 자동으로 약속 시간과 장소를 추출한다. 기계학습 기법으로는 CRF를 이용하였으며, 비속어나 신조어가 많고 줄임말이 많은 SMS 메시지의 특징상 토큰분리나 품사 부착 등의 전처리 언어엔진을 사용하지 않았으며, 대신 Bi-Gram 언어모델을 사용하였으며, 학습 시 사전이나 어휘 등의 다양한 자질들을 적용하여 시스템의 정확도를 높였다.

  • PDF

Query-based Answer Extraction using Korean Dependency Parsing (의존 구문 분석을 이용한 질의 기반 정답 추출)

  • Lee, Dokyoung;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.161-177
    • /
    • 2019
  • In this paper, we study the performance improvement of the answer extraction in Question-Answering system by using sentence dependency parsing result. The Question-Answering (QA) system consists of query analysis, which is a method of analyzing the user's query, and answer extraction, which is a method to extract appropriate answers in the document. And various studies have been conducted on two methods. In order to improve the performance of answer extraction, it is necessary to accurately reflect the grammatical information of sentences. In Korean, because word order structure is free and omission of sentence components is frequent, dependency parsing is a good way to analyze Korean syntax. Therefore, in this study, we improved the performance of the answer extraction by adding the features generated by dependency parsing analysis to the inputs of the answer extraction model (Bidirectional LSTM-CRF). The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. In this study, we compared the performance of the answer extraction model when inputting basic word features generated without the dependency parsing and the performance of the model when inputting the addition of the Eojeol tag feature and dependency graph embedding feature. Since dependency parsing is performed on a basic unit of an Eojeol, which is a component of sentences separated by a space, the tag information of the Eojeol can be obtained as a result of the dependency parsing. The Eojeol tag feature means the tag information of the Eojeol. The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. From the dependency parsing result, a graph is generated from the Eojeol to the node, the dependency between the Eojeol to the edge, and the Eojeol tag to the node label. In this process, an undirected graph is generated or a directed graph is generated according to whether or not the dependency relation direction is considered. To obtain the embedding of the graph, we used Graph2Vec, which is a method of finding the embedding of the graph by the subgraphs constituting a graph. We can specify the maximum path length between nodes in the process of finding subgraphs of a graph. If the maximum path length between nodes is 1, graph embedding is generated only by direct dependency between Eojeol, and graph embedding is generated including indirect dependencies as the maximum path length between nodes becomes larger. In the experiment, the maximum path length between nodes is adjusted differently from 1 to 3 depending on whether direction of dependency is considered or not, and the performance of answer extraction is measured. Experimental results show that both Eojeol tag feature and dependency graph embedding feature improve the performance of answer extraction. In particular, considering the direction of the dependency relation and extracting the dependency graph generated with the maximum path length of 1 in the subgraph extraction process in Graph2Vec as the input of the model, the highest answer extraction performance was shown. As a result of these experiments, we concluded that it is better to take into account the direction of dependence and to consider only the direct connection rather than the indirect dependence between the words. The significance of this study is as follows. First, we improved the performance of answer extraction by adding features using dependency parsing results, taking into account the characteristics of Korean, which is free of word order structure and omission of sentence components. Second, we generated feature of dependency parsing result by learning - based graph embedding method without defining the pattern of dependency between Eojeol. Future research directions are as follows. In this study, the features generated as a result of the dependency parsing are applied only to the answer extraction model in order to grasp the meaning. However, in the future, if the performance is confirmed by applying the features to various natural language processing models such as sentiment analysis or name entity recognition, the validity of the features can be verified more accurately.

String Kernel-based Relation Extraction using Lexical Patterns of Predicate-Argument Structure (술어-논항 구조의 어휘 패턴을 이용한 스트링 커널 기반 관계 추출)

  • Jeong, Chang-Hoo;Choi, Sung-Pil;Chun, Hong-Woo;Hong, Soon-Chan;Jung, Han-Min
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.327-329
    • /
    • 2012
  • 문서 내에 존재하는 중요한 개체들 간의 관계를 자동으로 추출할 때 개체와 개체 사이의 상호작용 표현에 중요하게 관여하는 핵심자질을 잘 선택할수록 빠르고 정확하게 관계 추출을 수행할 수 있다. 본 논문에서는 개체 쌍 사이에 존재하는 술어-논항 구조의 어휘 패턴 문자열을 정규화해서 스트링 커널에 적용하는 관계 추출 방법을 제안한다. 제안된 시스템의 성능 평가를 위해서 과학기술문헌에 존재하는 중요한 개체들 간의 연관관계 추출 성능 평가를 수행하는 테스트컬렉션을 자체적으로 구축하였으며 실험을 통하여 제안된 방법의 성능을 측정하였다. 정확도 실험 결과, 스트링 커널의 입력으로 문장 전체를 사용한 경우에는 55.0693%, 개체 쌍 사이의 문자열을 사용한 경우에는 61.0331%, 그리고 술어-논항 구조의 어휘 패턴 문자열을 사용한 경우에는 69.14%로, 술어-논항 구조의 어휘 패턴 문자열을 사용했을 때 성능이 가장 좋게 나타났다. 결론적으로 문장 내의 술어-논항 구조를 분석하여 정규화된 어휘 패턴을 생성하고 이렇게 생성된 문자열을 스트링 커널에 적용하는 방법이 관계 추출에 유용한 방법임을 알 수 있었다.

Text Animation with Music (음악이 흐르는 텍스트 애니메이션)

  • Park Doojin;Park Jong C.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.526-528
    • /
    • 2005
  • 음악은 스토리텔링에서 이야기의 분위기와 흐름을 전달하는데 중요한 역할을 한다. 최근 컴퓨터 애니메이션에 자동으로 알맞은 음악을 삽입하기 위하여 많은 연구가 진행되고 있지만 이야기가 있는 애니메이션보다는 주로 영상물의 동기화를 위한 연구가 대부분이었다. 텍스트 애니메이션은 동화를 자동으로 분석하여 애니메이션을 만들어 주는 연구이다. 본 논문에서는 동화의 이야기 구조에 근거하여 각 장면의 분위기에 맞는 음악 자질을 자동으로 추출하는 과정을 보이고 이를 이용하여 텍스트 애니메이션에 음악이 삽입될 수 있는 방법에 대하여 논의한다.

  • PDF

Analysis of Korean Language Parsing System and Speed Improvement of Machine Learning using Feature Module (한국어 의존 관계 분석과 자질 집합 분할을 이용한 기계학습의 성능 개선)

  • Kim, Seong-Jin;Ock, Cheol-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.66-74
    • /
    • 2014
  • Recently a variety of study of Korean parsing system is carried out by many software engineers and linguists. The parsing system mainly uses the method of machine learning or symbol processing paradigm. But the parsing system using machine learning has long training time because the data of Korean sentence is very big. And the system shows the limited recognition rate because the data has self error. In this thesis we design system using feature module which can reduce training time and analyze the recognized rate each the number of training sentences and repetition times. The designed system uses the separated modules and sorted table for binary search. We use the refined 36,090 sentences which is extracted by Sejong Corpus. The training time is decreased about three hours and the comparison of recognized rate is the highest as 84.54% when 10,000 sentences is trained 50 times. When all training sentence(32,481) is trained 10 times, the recognition rate is 82.99%. As a result it is more efficient that the system is used the refined data and is repeated the training until it became the steady state.

An Informetric Analysis on Intellectual Structures with Multiple Features of Academic Library Research Papers (복수 자질에 의한 지적 구조의 계량정보학적 분석연구: 국내 대학도서관 분야 연구논문을 대상으로)

  • Choi, Sang-Hee
    • Journal of the Korean Society for information Management
    • /
    • v.28 no.2
    • /
    • pp.65-78
    • /
    • 2011
  • The purpose of this study is to identify topic areas of academic library research using two informetric methods; word clustering and Pathfinder network. For the data analysis, 139 articles published in major library and information science journals from 2005 to 2009 were collected from the Korean Science Citation Index database. The keywords that represent research topics were gathered from two sections: an and titles in references. Results showed that reference titles usefully represent topics in detail, and combinings and reference titles can produce an expanded topic map.

Comments Classification System using Support Vector Machines and Topic Signature (지지 벡터 기계와 토픽 시그너처를 이용한 댓글 분류 시스템 언어에 독립적인 댓글 분류 시스템)

  • Bae, Min-Young;En, Ji-Hyun;Jang, Du-Sung;Cha, Jeong-Won
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.263-266
    • /
    • 2009
  • Comments are short and not use spacing words or comma more than general document. We convert the 7-gram into 3-gram and select key features using topic signature. Topic signature is widely used for selecting features in document classification and summarization. We use the SVM(Support Vector Machines) as a classifier. From the result of experiments, we can see that the proposed method is outstanding over the previous methods. The proposed system can also apply to other languages.

  • PDF

An Empirical Comparison of Machine Learning Models for Classifying Emotions in Korean Twitter (한국어 트위터의 감정 분류를 위한 기계학습의 실증적 비교)

  • Lim, Joa-Sang;Kim, Jin-Man
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.2
    • /
    • pp.232-239
    • /
    • 2014
  • As online texts have been rapidly growing, their automatic classification gains more interest with machine learning methods. Nevertheless, comparatively few research could be found, aiming for Korean texts. Evaluating them with statistical methods are also rare. This study took a sample of tweets and used machine learning methods to classify emotions with features of morphemes and n-grams. As a result, about 76% of emotions contained in tweets was correctly classified. Of the two methods compared in this study, Support Vector Machines were found more accurate than Na$\ddot{i}$ve Bayes. The linear model of SVM was not inferior to the non-linear one. Morphological features did not contribute to accuracy more than did the n-grams.