본 논문에서는 한국어 감정 분류에 기반이 되는 감정 자질 추출의 효과적인 추출 방법을 제안하고 평가하여, 그 유용성을 보인다. 한국어 감정 자질 추출은 감정을 지닌 대표적인 어휘로부터 시작하여 확장할 수 있으며, 이와 같이 추출된 감정 자질들은 문서의 감정을 분류하는데 중요한 역할을 한다. 문서 감정 분류에 핵심이 되는 감정 자질의 추출을 위해서는 영어 단어 시소러스 유의어 정보를 이용하여 자질들을 확장하고, 영한사전을 이용하여 확장된 자질들을 번역하여 감정 자질들을 추출하였다. 추출된 한국어 감정 자질들을 평가하기 위하여, 이진 분류 기법인 지지 벡터 기계(Support Vector Machine)를 사용해서 한국어 감정 자질로 표현된 입력문서의 감정을 분류하였다. 실험 결과, 추출된 감정 자질을 사용한 경우가 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우보다 약 14.1%의 성능 향상을 보였다.
기존의 이벤트 문장 추출에 관한 연구는 학습단계에서 3W 자질을 학습하지 않고, 추출단계에서 3W 자질의 존재여부에 따른 규칙만을 적용하여 이벤트 문장을 추출하였다. 본 논문에서는 온라인 동향 분석을 위해 학습단계에서 3W 자질을 추출하고 가중치를 계산하고, 추출단계에서 3W 자질을 반영하는 문장 가중치 기반 이벤트 문장 추출 방안을 제시한다. 실험결과, 자질필터링은 $TF{\times}IDF$ 가중치 기법을 사용한 상위 30% 자질만을 사용하는 것이 가장 우수한 결과를 보였다. 공공이슈 분야인 부동산 도메인에서 문장 가중치 기반 방법은 3W 자질 중 who와 when 자질이 가장 영향을 많이 미치는 것으로 나타났다. 아울러 다른 기계학습 방법과의 비교하여 공공이슈 분야인 부동산 도메인에서 문장 가중치 기반 이벤트 문장 추출 방법이 가장 좋은 성능을 보였다.
본 논문에서는 트위터 사용자들의 의견을 바이어스 탐지 하기 위해, 핵심 자질 추출 방법으로 HITS 그래프를 이용한 방법을 제안한다. 제안하는 핵심 자질 추출 방법은 사람이 직접 추출하지 못하는 자질도 추출할 수 있는 장점을 보였다. 제안한 핵심 자질 추출이 바이어스 탐지에 유효함을 검증하기 위해 4개의 토픽에 대해 평가 했을 때 제안 모델이 기존 모델보다 우수한 성능을 보였다.
최근 감정 분류에 대한 관심이 높아져 연구가 활발히 진행되고 있다. 문서 전체에 관한 감정의 분류도 중요하지만, 문서를 이루고 있는 문장에 관한 분류도 점차 그 필요성이 높아지고 있다. 본 논문에서는 한국어 감정 분류 시스템 구축을 위해서 추출된 한국어 감정 자질을 이용한 한국어 문장 및 문서 감정 분류에 관해 연구한다. 한국어 감정 분류의 시작은 감정을 내포한 대표적인 어휘로부터 시작하며, 이와 같은 감정 자질들은 문장 및 문서의 감정을 분류하는데 결정적인 관여를 한다. 한국어 감정 자질의 추출을 위하여 영어 단어 시소러스 정보를 이용하여 자질들을 확장하고, 영한사전을 통해 확장된 자질들을 번역함으로써 감정 자질들을 추출하였다. 추출된 감정 자질들을 사용하여, 단어 벡터로 표현된 입력문서를 이진 분류기인 지지벡터 기계(SVM: Support Vector Machine)를 이용하여 문장과 문서에 내포된 감정을 판단하고 평가하였다.
이 논문은 대화 시스템에서 질의를 이해하기 위해 딥 러닝 모델을 통해 추출된 자동 추출 자질을 이용하여 문장의 유사성을 분석하는 방법에 대해 기술한다. 문장 간 유사성을 분석하기 위한 자동 추출 자질로써, 문장 내 표현 순차적 정보를 반영하기 위한 RNN을 이용하여 생성한 문장 벡터와, 어순에 관계 없이 언어 모델을 학습하기 위한 CNN을 이용하여 생성한 문장 벡터를 사용한다. 이렇게 자동으로 추출된 문장 임베딩 자질은 금융서비스 대화에서 입력 문장을 분류하거나 문장 간 유사성을 분석하는데 이용된다. 유사성 분석 결과는 질의 문장과 관련된 FAQ 문장을 찾거나 답변 지식을 찾는데 활용된다.
본 논문에서는 기존의 관계 추출 성능을 향상시키기 위해서 기존의 자질 기반 방법에서 추구하였던 개체 주변 문맥 다양성 정보의 추출 및 적용과 커널 기반 방법의 강점인 관계 인스턴스에 대한 구문 구조적 자질 정보의 통합 활용을 통한 확장된 혼합 커널을 제안한다. ACE RDC 코퍼스를 활용한 실험에서, 기존의 합성곱 구문 트리 커널 기반 혼합 커널을 기반으로 총 9 종류의 평면적 어휘 자질 집합을 정의하고 이를 적용함으로써 성능 향상에 기여하는 어휘 자질 유형을 파악할 수 있었으며, 적은 규모의 학습 집합으로도 현재 최고 수준의 성능에 필적하는 결과를 얻을 수 있었다. 결론적으로 관계 추출을 위한 세 가지 핵심 정보, 즉 개체 자질, 구문 구조적 자질, 주변 문맥 어휘 자질을 통합 적용하면 관계 추출의 성능을 향상시킬 수 있음을 알 수 있었다.
개체 추출은 정보추출의 기초를 구성하는 태스크로, 관계 추출, 이벤트 추출 등 다양한 정보추출 태스크의 기반으로 중요하다. 최근에는 다중 레이블 개체와 중첩 개체를 다루기 위해 스팬기반의 개체추출이 주류로 연구되고 있다. 본 논문에서는 스팬을 표현하는 다양한 매핑과 자질들을 살펴보고 개체추출의 성능에 어떤 영향을 주는지를 분석하여 최적의 매핑 및 자질 조합을 제시하였다. 또한, 모델 구조에 있어서, 사전 학습 언어모델(PLM) 위에 BiLSTM 블록의 추가 여부에 따른 성능 변화를 분석하고, 모델의 학습에 있어서, 미세조정(finetuing) 이전에 예열학습(warmup training)을 사용하는 것이 효과적인지를 실험을 통해 비교 분석하여 제시하였다.
본 논문에서는 기계 학습(Machine Learning)을 이용하여 댓글의 악성 여부를 분류하는 시스템에 대해 설명한다. 댓글은 문장의 길이가 짧고 맞춤법이 잘 되어있지 않는 특성을 가지고 있다. 따라서 댓글 분석을 위해 형태소 분석 결과와 문자단위 Bi-gram, Tri-gram을 자질로 이용한다. 전처리 된 댓글에서 각 자질 추출 방법에 따라 자질을 추출한다. 추출된 자질을 이용하여 기계학습 알고리즘의 모델을 학습하고 댓글의 악성 여부 분류에 활용한다. 본 논문에서는 댓글의 악성 여부 판별을 위한 자질 추출방법을 제안하고 실험을 통해 이에 대한 효용성을 검증하였다.
인터넷을 이용한 사람들의 사회 참여가 확대되면서 다양한 의견(Opinion)들이 급속도로 증가하고 있으며 이러한 의견을 분석하여 유용한 정보로 활용하기 위한 연구가 활발히 진행되고 있다. 그 중에서도 상품리뷰는 기업에서 연구, 개발, 마케팅의 주요 자료로 사용되고 있으며 사용자가 상품의 구매를 결정하는 중요한 요인 중 하나로 작용하고 있다. 본 논문에서는 한국어로 이루어진 상품 리뷰를 분석하여 의견 자질(Feature)을 추출하고 분류(Classification)하는 시스템을 설계하고 구현하였다. 한글 의견 자질 추출을 위하여 먼저 한글 상품 리뷰를 분석하여 의견 사전을 구축하였다. 의견 사전으로는 의견 자질과 의견 어휘, 독립의견어휘, 의견 숙어, 부정어 등의 각기 다른 세부 사전을 구축하여 리뷰 분석 시 단계적으로 적용하여 정확도를 높일 수 있도록 설계하였다. 이렇게 구현된 시스템을 평가하기 위하여 각기 다른 3개의 도메인에서 실제 한국어 리뷰를 수집하여 실험을 수행하였으며 자질 추출에서는 평균 78.86% 정확률, 61.41% 재현율을, 극성 분류에서는 평균 69.46% 정확률, 42.26% 재현율을 나타냈다.
본 논문에서는 질의 응답 시스템의 성능 향상을 위한 질의문 심층 분석을 제안한다. 일반적인 질의응답 시스템들은 사용자의 자연언어 질의의 의미를 분석하지 않기 때문에 정확한 정답을 제공하는 것이 어렵다. 질의문 심층 분석은 의미자질 추출 문법과 자연언어 질의 특성을 이용하여 사용자의 질의를 의미적으로 분석하고, 의미자질들을 추출한다. 의미자질 추출 문법과 자연언어 질의 특성은 사용자 질의의 의미와 구문 구조를 반영하기 위해 의미자질과 형식형태소로 표현된다. 웹에서 추출한 세부 정답 유형이 '인물'인 100개의 질의에 대한 실험을 통해, 비교적 짧지만 사용자의 질의 의도를 충분히 표현하고 있는 자연언어 질의에 대해 질의문 심층 분석을 수행함으로써 사용자의 질의 의도를 분석하고, 의미자질들을 추출할 수 있음을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.