• Title/Summary/Keyword: 자질어 선택

Search Result 21, Processing Time 0.022 seconds

A Document Classification System Using Modified ECCD and Category Weight for each Document (Modified ECCD 및 문서별 범주 가중치를 이용한 문서 분류 시스템)

  • Han, Chung-Seok;Park, Sang-Yong;Lee, Soo-Won
    • The KIPS Transactions:PartB
    • /
    • v.19B no.4
    • /
    • pp.237-242
    • /
    • 2012
  • Web information service needs a document classification system for efficient management and conveniently searches. Existing document classification systems have a problem of low accuracy in classification, if a few number of feature words is selected in documents or if the number of documents that belong to a specific category is excessively large. To solve this problem, we propose a document classification system using 'Modified ECCD' feature selection method and 'Category Weight for each Document'. Experimental results show that the 'Modified ECCD' feature selection method has higher accuracy in classification than ${\chi}^2$ and the ECCD method. Moreover, combining the 'Category Weight for each Document' feature value and 'Modified ECCD' feature selection method results better accuracy in classification.

Comparison Between Optimal Features of Korean and Chinese for Text Classification (한중 자동 문서분류를 위한 최적 자질어 비교)

  • Ren, Mei-Ying;Kang, Sinjae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.386-391
    • /
    • 2015
  • This paper proposed the optimal attributes for text classification based on Korean and Chinese linguistic features. The experiments committed to discover which is the best feature among n-grams which is known as language independent, morphemes that have language dependency and some other feature sets consisted with n-grams and morphemes showed best results. This paper used SVM classifier and Internet news for text classification. As a result, bi-gram was the best feature in Korean text categorization with the highest F1-Measure of 87.07%, and for Chinese document classification, 'uni-gram+noun+verb+adjective+idiom', which is the combined feature set, showed the best performance with the highest F1-Measure of 82.79%.

Study of Feature Extraction Algorithm for Harmful word Filtering (유해어 필터링을 위한 자질어 추출 알고리즘에 관한 연구)

  • Jeong Jung-Hoon;Lee Won-Hee;Lee Shin-Won;An Don-Gun;Chung Sung-Jong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.7-9
    • /
    • 2006
  • 유해 정보란 정보의 홍수 속에서 무차별적으로 제공되는 음란, 폭력 등의 내용을 담고 있는 정보를 말한다. 이러한 유해 정보들로부터 청소년 등 사회적으로 보호를 받아야 할 인터넷 이용자들을 보호하기 위한 장치가 필요하다. 현재 다양한 방법이 제안되고 연구되고 있다. 본 연구에서는 유해 문서의 필터링을 기법 중 키워드 필터링에서 사용되는 유해어 사전을 위한 자질어 추출 알고리즘에 대해서 비교/연구하였다. 키워드 필터링에서 자질어는 필터링의 성능에 많은 영향을 미친다. 따라서 필터링의 성능을 높이기 위한 자질어 추출 알고리즘 선택은 매우 중요하다. 이에 본 논문에서는 다양한 알고리즘을 비교 분석하여 정확하고 효율적인 자질어 추출 알고리즘 조합을 찾고자 하였다. 그 결과 CHI/TF-IDF 조합이 높은 성능을 보였으며 92%의 정확도를 얻을 수 있었다.

  • PDF

Sentence Cohesion & Subject driving Keywords Extraction for Document Classification (문서 분류를 위한 문장 응집도와 주어 주도의 주제어 추출)

  • Ahn Heui-Kook;Roh Hi-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.463-465
    • /
    • 2005
  • 문서분류 시 문서의 내용을 표현하기 위한 자질로서 사용되는 단어의 출현빈도정보는 해당 문서의 주제어를 표현하기에 취약한 점을 갖고 있다. 즉, 키워드가 문장에서 어떠한 목적(의미)으로 사용되었는지에 대한 정보를 표현할 수가 없고, 문장 간의 응집도가 강한 문장에서 추출되었는지 아닌지에 대한 정보를 표현할 수가 없다. 따라서, 이 정보로부터 문서분류를 하는 것은 그 정확도에 있어서 한계를 갖게 된다. 본 논문에서는 이러한 문서표현의 문제를 해결하기위해, 키워드를 선택할 때, 자질로서 문장의 역할(주어)정보를 추출하여 가중치 부여방식을 통하여 주어주도정보량을 추출하였다. 또한, 자질로서 문장 내 키워드들의 동시출현빈도 정보를 추출하여 문장 간 키워드들의 연관성정도를 시소러스에 담아내었다. 그리고, 이로부터 응집도 정보를 추출하였다. 이 두 정보의 통합으로부터 문서 주제어를 결정함으로서, 문서분류를 위한 주제어 추출 시 불필요한 키워드의 삽입을 줄이고, 동시 출현하는 키워드들에 대한 선택 기준을 제공하고자 하였다. 실험을 통해 한번 출현한 키워드라도, 문장을 주도하는 주어로서 사용될 경우와 응집도 가중치가 높을 경우에 주제어로서의 선택될 가능성이 향상되고, 문서분류를 위해 좀 더 세분화된 키워드 점수화가 가능함을 확인하였다. 따라서, 선택된 주제어가 문서분류의 정확도에 있어서 향상을 가져올 수 있을 것으로 기대한다.

  • PDF

A Spam Filtering Method using Frequency Distribution of Special Letter and Frequency Ratio of Keyword (특수 문자 및 단어 빈도 비율을 이용한 스팸 필터링 방법)

  • Lee, Seong-Jin;Baik, Jong-Bum;Han, Chung-Seok;Lee, Soo-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.280-283
    • /
    • 2011
  • 인터넷 환경에서 무차별적으로 유통되는 스팸 문서로 인한 사회적 문제가 커져 가고 있는 가운데 스팸문서를 차단하기 위한 활발한 연구들이 이루어지고 있다. 이 가운데 대표적인 연구는 자질어를 이용한 기계학습 기반의 스팸 차단 기술이다. 그러나 이 방법은 미리 선택된 자질어로만 구성된 분류 모델을 사용하기 때문에 Term Spamming(단어 조작에 의한 스팸 차단 행위)에 취약하며, 스팸 차단의 성능과 학습 소요 시간이 선택된 자질어의 품질과 수에 민감하게 영향을 받는다는 문제점이 있다. 본 논문에서는 이러한 문제를 해결하기 위해 스팸 문서에서 등장하는 특수 문자의 빈도와 반복되는 단어의 특징을 이용한 스팸 탐지 방법을 제안한다. 제안 방법은 각 문서에서 등장하는 특수 문자의 비율과 최다 출현 단어의 반복 패턴을 정의하고 기계학습 알고리즘을 적용하여 스팸 분류 모델을 생성한다. 제안 방법의 성능 평가를 위해 E-mail 데이터와 블로그의 Post 데이터를 사용하여 자질어 기반의 스팸 차단 방법과 비교 실험을 진행하였다. 실험 결과 본 논문에서 제안하는 방법이 분류 정확도와 학습 소요 시간에 있어 우수한 성능을 보이는 것을 확인하였다.

Selection of Postpositions and Translated Words by Sentence Pattern in the English-Korean Machine Translation (영-한 기계번역에서 문형에 의한 조사 및 대역어 선택)

  • Park, Y.J.;Kim, N.S.;Lee, J.S.;Lee, Y.S.
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.105-109
    • /
    • 1999
  • 영-한 기계번역 중 변환 단계에서 한국어 문장을 생성하기 위해서는 구구조 변환 후 조사 및 대역어 선택으로 이루어진다. 그러나 하나의 영어 단어는 여러 개의 한국어 의미들을 가지고 있기 때문에 문장에서 사용된 영어의 정확한 의미에 해당하는 한국어 대역어를 선택하는 것은 번역의 질을 높이고 시스템의 성능에 매우 중요한 역할을 한다. 특히 용언 및 체언의 대역어 선택은 문장에서 서로 간의 의미적인 관계를 고려하여야 올바른 대역어를 선택할 수 있다. 기존에는 전자 사전에 용언과 체언간의 연어 정보(collocation information)를 구축하여 대역어 선택의 문제를 해결하려고 하였으나 연어 정보가 사전에 존재하지 않을 때 올바른 대역어를 선택할 수 없었다. 또한 용언과 체언의 관계를 나타내는 조사를 선택하기 위하여 격(case)을 세분화하여 사전을 구축하였으나 격의 분류 및 사전을 구축할 경우 격을 선택하는 어려움이 있었다. 이에 따라 본 논문에서는 문형(sentence pattern)에 의한 방법으로 용언의 대역어 및 용언이 갖는 필수격 체언의 조사와 대역어 선택방법을 제안한다. 문형의 구조적인 정보에는 용언과 체언의 의미적 역할(thematic role)을 하는 조사 및 용언이 갖는 필수격 체언의 의미 자질(semantic feature)을 갖고 있다. 이러한 의미 자질을 wordnet과 한/영 및 영/한 사전을 이용하여 의미 지표(semantic marker)를 갖는 문형 사전을 구축한다. 또한 의미 지표를 갖는 문형 사전을 기반으로 조사 및 대역어 선택 알고리즘을 개발한다.

  • PDF

Korean BaseNP Chunking Using Head-word of Word Phrase (어절의 중심어 정보를 이용한 한국어 기반 명사구 인식)

  • Seo, Chung-Won;Oh, Jong-Hoon;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.145-151
    • /
    • 2003
  • 기반 명사구는 명사구 내부에 다른 명사구를 포함하지 않는 명사구로 정의된다. 이러한 기반명사구인식은 구문해석의 성능을 향상시키기 위한 방법으로 많이 사용되어 왔다. 효과적인 기반 명사구인식을 위해서는 올바른 학습자질의 선택과 적절한 문맥의 범위의 설정이 중요하다. 이러한 관점에서 기존의 연구에서는 여러 가지 학습자질과 문맥의 범위로 기반명사구를 인식하였다. 하지만 기존의 연구들에서는 학습자질로 단순한 어휘, 품사, 띄어쓰기 정보만을 사용하여 좁은 범위의 문맥정보만을 사용하였다. 본 논문에서는 한국어의 기반 명사구 인식을 위해 학습의 자질로 어절의 중심어를 사용하는 HMM모델을 제안한다. 본 논문의 방법을 통해 정확률 94.3%, 재현률 93.2%의 성능을 얻었다.

  • PDF

Selecting Model of Head in Support Verb Constructions for Phrase-Pattern-based Korean-to-English Machine Translation (구 단위 패턴 기반 한영 기계 번역에서의 기능동사 구문의 중심어 선택 모델)

  • Kim, Hae-Gyung;Chae, Young-Soog;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.203-208
    • /
    • 1999
  • 한국어는 잉여성과 중의성의 범 언어적인 특징과 함께 다른 언어에 비해 주어의 생략이 두드러지며 어순이 자유롭기 때문에 구문 형식의 지배를 덜 받는다는 개별적인 특성을 지닌다. 이러한 특성으로 인해 기계번역의 패턴을 추출할 때 서로 유사 가능성이 있는 패턴에 대한 고려가 없이는 같은 의미의 서로 다른 여러 개의 패턴을 모두 하나의 패턴으로 처리하는 오류를 범할 위험이 있다. 본 연구에서 사용되는 구 단위 패턴은 동사구, 명사구, 형용사구 그리고 부사구를 중심으로 한국어 패턴, 패턴 대표 카테고리, 한국어 패턴의 중심어 및 제약조건 대역영어패턴 의미코드로 나뉜다. 범 언어적인 특성의 한국어와 영어간 격차를 해소하기 위해 각각의 명사에 의미코드를 사용하여 다중 언어기반 체계를 구축하였으며. 한국어의 개별적인 특성으로 인해 발생하는 문제를 해소하기 위해 중심어 부과 자질을 사용하였다. 중심어 부과 자질에 있어서, 특히 술어기능명사를 중심어로 하는 기능동사 '하-' 구문은 다른 동사 구문의 형식과는 달리 논항의 수와 형태를 동사가 아닌 명사가 수행하게 된다. 이러한 특징에 대한 변별적인 자질 부여는 구문의 형태-통사적 특징 뿐만이 아니라 의미적인 고유의 특성까지도 잘 뒷받침하면서 패턴 추출에 월등한 효율성을 제시할 수 있다. 향후 이에 대한 연구는 전반적인 기능동사 구문뿐만이 아니라 개별적인 특징을 보이는 모든 구문에 대한 연구로 확대되어 패턴 기반 기계번역의 패턴 추출에 기본적인 정보의 역할을 담당해야 할 것이다.

  • PDF

Comments Classification System using Topic Signature and n-gram (Topic signatur e와 n-gram을 이용한 댓글 분류 시스템)

  • Bae, Min-Young;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2008.10a
    • /
    • pp.189-194
    • /
    • 2008
  • 본 논문에서는 토픽 시그너처(Topic Signature)와 n-gram을 이용한 댓글 분류 시스템을 개발한다. 토픽 시그너처는 문서요약이나 문서분류에서 자질 선택을 위한 방법으로 많이 사용되어지며, n-gram은 모든 언어에 적용 가능한 장점이 있다. 악성댓글은 대체로 문장 길이가 짧고 유행어나 변형어의 출현 빈도가 높으며 비정형화된 특징이 있다. 따라서 우리는 댓글을 n-gram으로 나누어 자질로 선택한다. 분류를 위해 베이지안(Bayesian)모델을 사용하였다. 본 논문에서는 한글과 영어 댓글에 대한 판별 실험을 통하여 구현한 시스템이 복잡한 전처리 과정이 필요한 기존에 제안된 방법들보다 더 나은 성능을 보이며, 언어에 관계없이 적용 가능하다는 것을 실험 결과를 통해 확인할 수 있었다.

  • PDF

Incremental Enrichment of Ontologies through Feature-based Pattern Variations (자질별 관계 패턴의 다변화를 통한 온톨로지 확장)

  • Lee, Sheen-Mok;Chang, Du-Seong;Shin, Ji-Ae
    • The KIPS Transactions:PartB
    • /
    • v.15B no.4
    • /
    • pp.365-374
    • /
    • 2008
  • In this paper, we propose a model to enrich an ontology by incrementally extending the relations through variations of patterns. In order to generalize initial patterns, combinations of features are considered as candidate patterns. The candidate patterns are used to extract relations from Wikipedia, which are sorted out according to reliability based on corpus frequency. Selected patterns then are used to extract relations, while extracted relations are again used to extend the patterns of the relation. Through making variations of patterns in incremental enrichment process, the range of pattern selection is broaden and refined, which can increase coverage and accuracy of relations extracted. In the experiments with single-feature based pattern models, we observe that the features of lexical, headword, and hypernym provide reliable information, while POS and syntactic features provide general information that is useful for enrichment of relations. Based on observations on the feature types that are appropriate for each syntactic unit type, we propose a pattern model based on the composition of features as our ongoing work.