• Title/Summary/Keyword: 자질선택

Search Result 125, Processing Time 0.021 seconds

Analysis and Study of Internal Learning Trend of Deep Classifier according to Depth (깊이에 따른 중간 단계 분류기 내부 학습 경향 분석 및 고찰)

  • Seong, Su-Jin;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.115-119
    • /
    • 2019
  • 딥러닝 모델은 자동으로 자질을 추출하고 추상화 하기 위해 깊은 은닉층을 가지며, 이전 연구들은 이러한 은닉층을 깊게 쌓는 것이 성능 향상에 기여한다는 것을 증명해왔다. 하지만 데이터나 태스크에 따라 높은 성능을 내는 깊이가 다르고, 모델 깊이 설정에 대한 명확한 근거가 부족하다. 본 논문은 데이터 셋에 따라 적합한 깊이가 다르다고 가정하고, 이를 확인하기 위해 모델 내부에 분류기를 추가하여 모델 내부의 학습 경향을 확인하였다. 그 결과 태스크나 입력의 특성에 따라 필요로 하는 깊이에 차이가 있음을 발견하였고, 이를 근거로 가변적으로 깊이를 선택하여 모델의 출력을 조절하여 그 결과 성능이 향상됨을 확인하였다.

  • PDF

Occupational Evaluation Criteria and Dental Hygienists of Some College Students Occupational Perception Analysis Study (일부대학생들의 직업평가기준과 치과위생사 직업에 대한 인식 분석 연구)

  • Sung-Uk Yoon
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • Study surveyed perception of dental hygienist occupation was surveyed by examining the qualifications, occupational evaluation Criteria, professional intuition of some college students for the dental hygienist occupation analyzed by the SPSS WIN18.0 program. Among the necessary qualities of dental hygienist, 'professional knowledge of dental hygiene', 'dental hygiene skills' were the highest. Average of Job evaluation Criteria was 4.06, which was higher than the average of 3.80 Job evaluation factors of dental hygienists. As for the Job evaluation criteria, 'stable job', 'job with good work atmosphere and interpersonal relationship' was the highest, 'job with contact with people', 'independent job' was the most. Job evaluation Criteria for dental hygienists, 'jobs with contact with people', 'jobs that can help others' were high, and 'high wages', 'high probability of promotion' were low. As a result of regression analysis of general characteristics and dental hygiene professionalism, it was analyzed that the professionalism of dental hygienists increased when the major was non-health. Overall, In order to improve the qualifications of dental hygienists and raise awareness of vocational evaluation, efforts should be made systematically to identify the strengths and weaknesses of vocational evaluation and dental hygienists and to seek improvements.

A Study on Evaluating the Practicalness of Library and Information Courses in Korea (한국 문헌정보학 교과목의 실용성 평가에 관한 연구)

  • Noh, Young-He;Ahn, In-Ja;Choi, Sang-Ki
    • Journal of Korean Library and Information Science Society
    • /
    • v.42 no.4
    • /
    • pp.5-29
    • /
    • 2011
  • This study proposed to assess courses which are currently offered in the Department of Library and Information Science, and to explore directions for improvement. Based on field librarians' needs and opinions about the courses, we suggested separating the required, core, and elective courses. We proposed six courses including 'Internship', 'Introduction to Library and Information Science', 'Cataloging and Classification', 'Library Management', and 'Information Retrieval' as required courses, and 5 courses including 'Practice in Cataloging and Classification', 'Information Resource and Service', 'Collection Development', 'Digital Library System', 'Introduction to Bibliography' and 'Records Management and Archives' as core courses. Finally, the remaining courses were recommended as selective courses which each department could select depending on their circumstances and faculty. The important components for substantial LIS courses are as follows: timeliness of training topics, expertise of educational contents, professionalism and qualifications of faculty, specialized educational materials, and increasing the major correlation between courses and professors.

Articulation Scores and Confusion Patterns of the 100 Monosyllable Korean Speech Sounds (우리말 100단음절의 명료도와 오청상에 관한 연구)

  • 유방환;김홍기;노관택
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1972.03a
    • /
    • pp.1.1-1
    • /
    • 1972
  • It is well known that speech signals are the most riliable materials for the hearing test and there are various difficult problems in the selection of these materials. Because of these difficulties, there is not a confirmed test material of Korean speech sound up to date. For the basis of the test materials, author had studied articulation scores and confusion patterns of 100 monosyllable korean speech sounds in normal listners, in normal listners under various noisy (white noise and speech noise) circumstances, and in patients with hearing loss, The results reveal as follows. 1. Except for perceptive deafness with poor articulation score, Confusion was occured among initial consonants, vowels and final consonants respectively according to their distinctive features under above various test conditions. 2. There is remarkable differences in articulation scores between different kindes of noise under some intensity levels.

  • PDF

(Resolving Prepositional Phrase Attachment and POS Tagging Ambiguities using a Maximum Entropy Boosting Model) (최대 엔트로피 부스팅 모델을 이용한 영어 전치사구 접속과 품사 결정 모호성 해소)

  • 박성배
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.570-578
    • /
    • 2003
  • Maximum entropy models are promising candidates for natural language modeling. However, there are two major hurdles in applying maximum entropy models to real-life language problems, such as prepositional phrase attachment: feature selection and high computational complexity. In this paper, we propose a maximum entropy boosting model to overcome these limitations and the problem of imbalanced data in natural language resources, and apply it to prepositional phrase (PP) attachment and part-of-speech (POS) tagging. According to the experimental results on Wall Street Journal corpus, the model shows 84.3% of accuracy for PP attachment and 96.78% of accuracy for POS tagging that are close to the state-of-the-art performance of these tasks only with small efforts of modeling.

Classification Accuracy by Deviation-based Classification Method with the Number of Training Documents (학습문서의 개수에 따른 편차기반 분류방법의 분류 정확도)

  • Lee, Yong-Bae
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.325-332
    • /
    • 2014
  • It is generally accepted that classification accuracy is affected by the number of learning documents, but there are few studies that show how this influences automatic text classification. This study is focused on evaluating the deviation-based classification model which is developed recently for genre-based classification and comparing it to other classification algorithms with the changing number of training documents. Experiment results show that the deviation-based classification model performs with a superior accuracy of 0.8 from categorizing 7 genres with only 21 training documents. This exceeds the accuracy of Bayesian and SVM. The Deviation-based classification model obtains strong feature selection capability even with small number of training documents because it learns subject information within genre while other methods use different learning process.

Learning Text Chunking Using Maximum Entropy Models (최대 엔트로피 모델을 이용한 텍스트 단위화 학습)

  • Park, Seong-Bae;Zhang, Byoung-Tak
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.130-137
    • /
    • 2001
  • 최대 엔트로피 모델(maximum entropy model)은 여러 가지 자연언어 문제를 학습하는데 성공적으로 적용되어 왔지만, 두 가지의 주요한 문제점을 가지고 있다. 그 첫번째 문제는 해당 언어에 대한 많은 사전 지식(prior knowledge)이 필요하다는 것이고, 두번째 문제는 계산량이 너무 많다는 것이다. 본 논문에서는 텍스트 단위화(text chunking)에 최대 엔트로피 모델을 적용하는 데 나타나는 이 문제점들을 해소하기 위해 새로운 방법을 제시한다. 사전 지식으로, 간단한 언어 모델로부터 쉽게 생성된 결정트리(decision tree)에서 자동적으로 만들어진 규칙을 사용한다. 따라서, 제시된 방법에서의 최대 엔트로피 모델은 결정트리를 보강하는 방법으로 간주될 수 있다. 계산론적 복잡도를 줄이기 위해서, 최대 엔트로피 모델을 학습할 때 일종의 능동 학습(active learning) 방법을 사용한다. 전체 학습 데이터가 아닌 일부분만을 사용함으로써 계산 비용은 크게 줄어 들 수 있다. 실험 결과, 제시된 방법으로 결정트리의 오류의 수가 반으로 줄었다. 대부분의 자연언어 데이터가 매우 불균형을 이루므로, 학습된 모델을 부스팅(boosting)으로 강화할 수 있다. 부스팅을 한 후 제시된 방법은 전문가에 의해 선택된 자질로 학습된 최대 엔트로피 모델보다 졸은 성능을 보이며 지금까지 보고된 기계 학습 알고리즘 중 가장 성능이 좋은 방법과 비슷한 성능을 보인다 텍스트 단위화가 일반적으로 전체 구문분석의 전 단계이고 이 단계에서의 오류가 다음 단계에서 복구될 수 없으므로 이 성능은 텍스트 단위화에서 매우 의미가 길다.

  • PDF

String Kernel-based Relation Extraction using Lexical Patterns of Predicate-Argument Structure (술어-논항 구조의 어휘 패턴을 이용한 스트링 커널 기반 관계 추출)

  • Jeong, Chang-Hoo;Choi, Sung-Pil;Chun, Hong-Woo;Hong, Soon-Chan;Jung, Han-Min
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.327-329
    • /
    • 2012
  • 문서 내에 존재하는 중요한 개체들 간의 관계를 자동으로 추출할 때 개체와 개체 사이의 상호작용 표현에 중요하게 관여하는 핵심자질을 잘 선택할수록 빠르고 정확하게 관계 추출을 수행할 수 있다. 본 논문에서는 개체 쌍 사이에 존재하는 술어-논항 구조의 어휘 패턴 문자열을 정규화해서 스트링 커널에 적용하는 관계 추출 방법을 제안한다. 제안된 시스템의 성능 평가를 위해서 과학기술문헌에 존재하는 중요한 개체들 간의 연관관계 추출 성능 평가를 수행하는 테스트컬렉션을 자체적으로 구축하였으며 실험을 통하여 제안된 방법의 성능을 측정하였다. 정확도 실험 결과, 스트링 커널의 입력으로 문장 전체를 사용한 경우에는 55.0693%, 개체 쌍 사이의 문자열을 사용한 경우에는 61.0331%, 그리고 술어-논항 구조의 어휘 패턴 문자열을 사용한 경우에는 69.14%로, 술어-논항 구조의 어휘 패턴 문자열을 사용했을 때 성능이 가장 좋게 나타났다. 결론적으로 문장 내의 술어-논항 구조를 분석하여 정규화된 어휘 패턴을 생성하고 이렇게 생성된 문자열을 스트링 커널에 적용하는 방법이 관계 추출에 유용한 방법임을 알 수 있었다.

An Effective Segmentation Scheme for Korean Sentence Classification tasks (한국어 문장 분류 태스크에서의 효과적 분절 전략)

  • Kim, Jin-Sung;Kim, Gyeong-Min;Son, Junyoung;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.173-177
    • /
    • 2021
  • 분절을 통한 양질의 입력 자질을 구성하는 것은 언어모델의 문장에 대한 이해도를 높이기 위한 필수적인 단계이다. 분절은 문장의 의미를 이해하는 데 있어 중요한 역할을 하기 때문이다. 따라서, 한국어 문장 분류 태스크를 수행함에 있어 한국어의 특징에 맞는 분절 기법을 선택하는 것은 필수적이다. 명확한 판단 기준 마련을 위해, 우리는 한국어 문장 분류 태스크에서 가장 효과적인 분절 기법이 무엇인지 감성 분석, 자연어 추론, 텍스트 간 의미적 유사성 판단 태스크를 통해 검증한다. 이 때 비교할 분절 기법의 유형 분류 기준은 언어학적 단위에 따라 어절, 형태소, 음절, 자모 네 가지로 설정하며, 분절 기법 외의 다른 실험 환경들은 동일하게 설정하여 분절 기법이 문장 분류 성능에 미치는 영향만을 측정하도록 한다. 실험 결과에 따르면 자모 단위의 분절 기법을 적용한 모델이 평균적으로 가장 높은 성능을 보여주며, 반복 실험 간 편차가 적어 일관적인 성능 결과를 기록함을 확인할 수 있다.

  • PDF

A Korean Community-based Question Answering System Using Multiple Machine Learning Methods (다중 기계학습 방법을 이용한 한국어 커뮤니티 기반 질의-응답 시스템)

  • Kwon, Sunjae;Kim, Juae;Kang, Sangwoo;Seo, Jungyun
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1085-1093
    • /
    • 2016
  • Community-based Question Answering system is a system which provides answers for each question from the documents uploaded on web communities. In order to enhance the capacity of question analysis, former methods have developed specific rules suitable for a target region or have applied machine learning to partial processes. However, these methods incur an excessive cost for expanding fields or lead to cases in which system is overfitted for a specific field. This paper proposes a multiple machine learning method which automates the overall process by adapting appropriate machine learning in each procedure for efficient processing of community-based Question Answering system. This system can be divided into question analysis part and answer selection part. The question analysis part consists of the question focus extractor, which analyzes the focused phrases in questions and uses conditional random fields, and the question type classifier, which classifies topics of questions and uses support vector machine. In the answer selection part, the we trains weights that are used by the similarity estimation models through an artificial neural network. Also these are a number of cases in which the results of morphological analysis are not reliable for the data uploaded on web communities. Therefore, we suggest a method that minimizes the impact of morphological analysis by using character features in the stage of question analysis. The proposed system outperforms the former system by showing a Mean Average Precision criteria of 0.765 and R-Precision criteria of 0.872.