• Title/Summary/Keyword: 자주달개비

Search Result 33, Processing Time 0.017 seconds

Assessment of Environmental Pollution with Tradescantia Bioassays (자주달개비 생물검정 기법을 이용한 환경오염 평가)

  • Kim Jin Gyu;Sin Hae Sik
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2004.05a
    • /
    • pp.1-15
    • /
    • 2004
  • Higher plants can be valuable genetic assay systems for monitoring environmental pollutants and evaluating their biological toxicity. Two assays are considered ideal for in situ monitoring and testing of soil, airborne and aqueous mutagenic agents; the Tradescantia stamen hair assay for somatic cell mutations and the Tradescantia micronucleus assay for chromosome aberrations. Both assays can be used for in vivo and in vitro testing of mutagens. Since higher plant systems are now recognized as excellent indicators and have unique advantages over in situ monitoring and screening, higher plant systems could be accepted by regulatory authorities as an alternative first-tier assay system for the detection of possible genetic damages resulting from the pollutants or chemicals used and produced by industrial sectors. It has been concluded that potential mutagen and carcinogen such as the heavy metals among indoor air particulates, volatile compounds in the working places, soil, and water pollutants contribute to the overall health risk. This contribution can be considerable under certain circumstances. It is therefore important to identify the level of genotoxic activity in the environment and to relate it to the biomarkers of a health risk in humans. The results from the higher plant bioassays could make a significant contribution to assessing the risks of pollutants and protecting the public firom agents that can cause mutation anuor cancer. The plant bioassays, which are relatively inexpensive and easy to handle, are recommended for the scientists who are interested in monitoring pollutants and evaluating their environmental toxicity to living organisms.

  • PDF

Genotoxicity of Heavy Metals among the Particulates in the Working Environment as Assessed by Tradescantia-Micronucleus (Trad-MCN) Assay (자주달개비 미세핵 분석법을 이용한 작업환경내 총 먼지 중 수용성 추출물의 유전독성 평가)

  • Shin, Hae-Shik;Kim, Jin-Kyu;Lee, Jae-Hwan;Hwang, Kap-Sung;Kim, Kyun;Lee, Jeong-Joo;Lee, Jin-Hong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.639-646
    • /
    • 2003
  • In this study, we evaluated genotoxicity of heavy metals among particulates with Tradescantia-micronucleus (Trad-MCN) assay in the various working environment. In a synthetic fiber factory and a rubber factory, chromium concentration was higher than any other heavy metals. On the other hand, nickel concentration was the highest in a semi-conductor factory. The difference in genotoxicity among the working environment was statistically significant as Trad-MCN frequencies were 4.07 $\pm$0.35 MCN/100 tetrads (p< 0.01) for the synthetic fiber factory,5.73 $\pm$0.81 MCN/100 tetrads (p< 0.01) for the rubber factory, and 15.60$\pm$2.58 (p< 0.01) (p< 0.001) for the semi -conductor factory. As a result, heavy metals among particulates in the working environment can be considered to have hazardous potential to human health, although they cannot directly induce DNA damage to the workers in the working environments.

Misconceptions and Truths of Morphological Characteristics in Plant Stomata (식물에서 기공 형태에 대한 오해와 진실)

  • Kim, Dae Jae;Lee, Joon Sang
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.241-246
    • /
    • 2017
  • The walls of guard cells have many different specialized features. Guard cells are present in leaves of bryophytes, ferns and almost all of the vascular plants. Guard cells show considerable morphological diversities. It is understood that the stomata show two types in terms of morphological characterizations of guard cells. The first type is only found in a few monocots including Poaceae and Cyperaceae. In rice and corn, guard cells have the morphological characteristics of dumbbell shape. The morphological characteristics of dumbbell shape always have subsidiary cells. The other type is found in every dicots and many monocots and they are kidney-shaped guard cells. The plants of kidney-shaped guard cells rarely have subsidiary cells except Commelina communis L. Therefore, it could be concluded that two types of the morphological characteristics of guard cells cannot divide according to monocots or dicots. Every plants in which stomatal characteristic features were all different, most of them belong to kidney-shaped guard cells. However in case of Sedum sarmentosum, guard cells were shown to be long and narrow lips type. In Tradescantia virginiana, the shape of guard cells could be called perfectly to half-moon type. Therefore, it could be concluded that kidney-shaped types are all different in some way, but dumbbell-shaped types are almost constant.