• 제목/요약/키워드: 자전연소합성

검색결과 56건 처리시간 0.016초

Effect of Additives on the Characteristics of Amorphous Nano Boron Powder Fabricated by Self-Propagating High Temperature Synthesis (자전연소합성법을 이용한 비정질 나노 붕소 분말 특성에미치는 첨가제의 영향)

  • Joo, Sin Hyong;Nersisyan, Hayk H.;Lee, Tae Hyuk;Cho, Young Hee;Kim, Hong Moule;Lee, Huk Hee;Lee, Jong Hyeon
    • Korean Journal of Materials Research
    • /
    • 제25권12호
    • /
    • pp.659-665
    • /
    • 2015
  • The self-propagating high temperature synthesis approach was applied to synthesize amorphous boron nano-powders in argon atmospheres. For this purpose, we investigated the characteristics of a thermally induced combustion wave in the $B_2O_3+{\alpha}Mg$ system(${\alpha}=1.0-8.0$) in an argon atmospheres. In this study, the exothermic nature of the $B_2O_3-Mg$ reaction was investigated using thermodynamic calculations. Experimental study was conducted based on the calculation data and the SHS products consisting of crystalline boron and other compounds were obtained starting with a different initial molar ratio of Mg. It was found that the $B_2O_3$ and Mg reaction system produced a high combustion temperature with a rapid combustion reaction. In order to regulate the combustion reaction, NaCl, $Na_2B_4O_7$ and $H_3BO_3$ additives were investigated as diluents. In an experimental study, it was found that all diluents effectively stabilized the reaction regime. The final product of the $B_2O_3+{\alpha}Mg$ system with 0.5 mole $Na_2B_4O_7$ was identified to be amorphous boron nano-powders(< 100 nm).

Preparation of Quasi-nano-sized of Ba-Zn Ferrites Powders by Self-Propagating High Temperature Synthesis and Mechanical Milling (고온 자전 연소합성법과 기계적 미분에 의한 준나노 크기의 Ba-Zn Ferrite 분말의 제조)

  • Choi, Kyung-Suk;Lee, Jong-Jae;Kim, Hyuk-Don;Choi, Yong;Lee, Sang-Heon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제57권4호
    • /
    • pp.625-628
    • /
    • 2008
  • Ba-Zn ferrite powders for electromagnetic insulator were synthesized by self-propagating high-temperature synthesis(SHS) with a reaction of $xBaO_2+(1-x)ZnO+0.5Fe_2O_3+Fe{\rightarrow}Ba_xZn_{1-x}Fe_2O_4$. In this study, phase indentification of SHS products was carried out by using x-ray diffractometry and quasi-nano sized Ba-Zn powders were prepared by a pulverizing process. SHS mechanism was studied by thermodynamical analysis about oxidation reaction among $BaO_2,\;ZnO,\;Fe_2O_3$, and Fe. As oxygen pressure increases from 0.25 MPa to 1.0 MPa, the SHS reactions occur well and make clearly the SHS products. X-ray analysis shows that final SHS products formed with the ratio of $BaO_2/ZnO$ of 0.25, 1.0 and 4.0, are mainly $Ba_xZn_{1-x}Fe_2O_4$. Based on thermodynamical evaluation, the heat of formation increases in the order of $ZnFe_2O_4,\;BaFe_2O_4$, and $Ba_xZn_{1-x}Fe_2O_4$. This supports that $Ba_xZn_{1-x}Fe_2O_4$ phase is predominately formed during SHS reaction. The SHS reactions to form $Ba_xZn_{1-x}Fe_2O_4$ depends on oxygen partial pressure, and the heat of formation during the SHS reaction. The SHS reactions tends to occur well with increasing the oxygen partial pressure and BaO2/ZnO ratio in the reactants This means that the SHS reaction for the formation of Ba-Zn ferrite includes the reduction of BaO2/ZnO and the oxidation of Fe. $Ba_xZn_{1-x}Fe_2O_4$ powders after pulverizing is agglomeratedwith a size of about $50{\mu}m$, in which quasi-nano sized particles with about 300nm are present.

Preparation of α-Si3N4 Powder in Reaction System Containing Molten Salt by SHS - Part 1. Synthesis of Powder (용융염계에서 자전연소합성법에 의한 α-Si3N4분말의 제조 - Part 1.분말의 합성)

  • ;;Nersisyan Hayk
    • Journal of the Korean Ceramic Society
    • /
    • 제41권3호
    • /
    • pp.235-242
    • /
    • 2004
  • Si, NH$_4$Cl, NaN$_3$, NaCl, $N_2$ were used as raw materials for preparation of $\alpha$-Si$_3$N$_4$ powder. NH$_4$Cl and NaN$_3$ were used as additives, and NaCl was used as a diluent. Initial $N_2$ gas pressure in the SHS reactor was 60 atm. In preparation of $\alpha$-Si$_3$N$_4$, the reactivity and the properties of the products were examined with the various kinds of additives and the content of diluent. At first, the optimum reaction system for the preparation of $\alpha$-Si$_3$N$_4$ is examined and then the optimum composition was examined in the optimum reaction system. The optimum reaction system was Si-$N_2$-additive(NH$_4$Cl+NaN$_3$)-diluent(NaCl) and the optimum composition was 38 wt%Si+50 wt%(NH$_4$Cl+NaN$_3$)+12 wt%NaCl. The maximum fraction of $\alpha$-phase of Si$_3$N$_4$ produced in this condition was 96.5 wt% and the shape of the $\alpha$-Si$_3$N$_4$ produced in this condition was an irregular fiber with a length of 10 ${\mu}{\textrm}{m}$ and a diameter of 1 ${\mu}{\textrm}{m}$.

SiO2 Behavior of MoSi2 Powders Containing SiO2 Synthesized by SHS Method (자전연소합성법으로 제조된 SiO2 첨가된 MoSi2 분말 내에서의 SiO2의 거동 연구)

  • Rha, Sa-Kyun;Jeon, Min-Seok;Song, Jun-Kwang;Han, Dong-Bin;Jeong, Cheol-Weon;Kim, Sung-Soo;Lee, Youn-Seoung
    • Journal of the Korean Ceramic Society
    • /
    • 제48권6호
    • /
    • pp.559-564
    • /
    • 2011
  • In order to investigate the behavior of $SiO_2$ in the molybdenum silicide powders, crystal structure of these powders was measured by XRD, in addition, surface composition and surface phase (or chemical states) and microstructure were analysed by XPS and TEM, respectively. Mo-silicide powders containing $SiO_2$ were synthesized by SHS (Self-Propagating High-Temperature Synthesis) technique. In XRD result, according to increase of $SiO_2$ contents, the crystal structure for synthesized $MoSi_2$ powders was still typical $MoSi_2$ bct without any other phases. By XPS analysis, the surface of Mo and Si source powders was covered with $MoO_3$ and $SiO_2$, respectively, and the surface of synthesized $MoSi_2$ powder was also covered with $MoO_3$ and $SiO_2$, which were stable oxides at room temperature. However, according to increase of $SiO_2$ addition, $MoSi_2$ phase in XPS spectra decreased and $SiO_2$ phase increased relatively in synthesized $MoSi_2$ powders. From the results by XPS and XRD, we found that the existent $SiO_2$ has amorphous structure. In the microstructure, the small particulates of the synthesized products added $SiO_2$ agglomerated together to form larger clusters (from ~10 nm to ~1 ${\mu}m$). From TEM, XPS, and XRD results, we found that the out layer of agglomeration of synthesized $MoSi_2$ powder is surrounded by amorphous $SiO_2$.

Hydrogen Storage Properties of Zr-Based AB2-x Mx Metal Hydrides Made by Hydriding Combustion Synthesis (HCS) (자전연소합성법으로 제조한 Zr계 AB2-x Mx 금속수소화물의 수소저장특성)

  • Hur, Tae Hong;Han, Jeong Seb;Kim, Jin Ho
    • Korean Journal of Metals and Materials
    • /
    • 제50권3호
    • /
    • pp.256-262
    • /
    • 2012
  • This study investigated the hydrogen storage properties of Zr-Based $AB_{2-x}M_x$ metal hybride made by HCS (Hydriding Combustion Synthesis). The materials were prepared by HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm, HCS 80 wt% $AB_2$-20 wt% Mg and pure Zr-Based $AB_2$, These materials were activated at 298 K under 20 bar. Both HCS 80 wt% $AB_2$-20 wt% Mg and HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm were absorbed within 1 minute. In the case of the $AB_2$, it was perfectly absorbed within 6 minutes. Then, the materials were evaluated to obtain P-C-T (Pressure-Composition-Temperature) curves at 298K. As a result, the hydrogen storage capacity of HCS 80 wt% $AB_2$-20 wt% Mg, HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm and pure Zr-Based $AB_2$ were determined to be 1.2, 1.6 and 1.74 wt%, respectively. The activation energy and rate controlling step were calculated by the Johnson-Mehl Avrami equation. The activation energies of HCS 80 wt% $AB_2$-20 wt% Mg, HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm and pure Zr-Based $AB_2$ were 26.91, 20.45, and 60.41 kJ/mol, respectively. Also, the values of ${\eta}$ in the Johnson-Mehl Avrami equation for HCS 80 wt% $AB_2$-20 wt% Mg, HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm and pure Zr-Based $AB_2$ are 0.60, 0.51, and 0.44. So, the rate controlling steps which indicate hydrogen storage mechanism are an one dimensional diffusion process.

Recycling of Hardmetal Tool through Alkali Leaching Process and Fabrication Process of Nano-sized Tungsten Carbide Powder using Self-propagation High-temperature Synthesis (알칼리 침출법을 통한 초경 공구의 재활용 및 자전연소합성법을 통해 제조된 나노급 탄화텅스텐 제조공정 연구)

  • Kang, Hee-Nam;Jeong, Dong Il;Kim, Young Il;Kim, In Yeong;Park, Sang Cheol;Nam, Cheol Woo;Seo, Seok-Jun;Lee, Jin Yeong;Lee, Bin
    • Journal of Powder Materials
    • /
    • 제29권1호
    • /
    • pp.47-55
    • /
    • 2022
  • Tungsten carbide is widely used in carbide tools. However, its production process generates a significant number of end-of-life products and by-products. Therefore, it is necessary to develop efficient recycling methods and investigate the remanufacturing of tungsten carbide using recycled materials. Herein, we have recovered 99.9% of the tungsten in cemented carbide hard scrap as tungsten oxide via an alkali leaching process. Subsequently, using the recovered tungsten oxide as a starting material, tungsten carbide has been produced by employing a self-propagating high-temperature synthesis (SHS) method. SHS is advantageous as it reduces the reaction time and is energy-efficient. Tungsten carbide with a carbon content of 6.18 wt % and a particle size of 116 nm has been successfully synthesized by optimizing the SHS process parameters, pulverization, and mixing. In this study, a series of processes for the high-efficiency recycling and quality improvement of tungsten-based materials have been developed.