• Title/Summary/Keyword: 자율 이동 로봇

Search Result 415, Processing Time 0.033 seconds

Hybrid System Modeling and Control for Path Planning and Autonomous Navigation of Wheeled Mobile Robots (차륜형 이동로봇의 경로 계획과 자율 주행을 위한 하이브리드 시스템 모델과 제어)

  • Im, Mi-Seop;Im, Jun-Hong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.1
    • /
    • pp.33-40
    • /
    • 2000
  • In this paper, an integrated method for the path planning and motion control of wheeled mobile robots using a hybrid system model and control is presented. The hybrid model including the continuous dynamics and discrete dynamics with the continuous and discrete state vector is derived for a two wheel driven mobile robot. The architecture of the hybrid control system for real time path planning and following is designed which has the 3-layered hierarchical structure : the discrete event system using the digital automata as the higher process, the continuous state system for the wheel velocity controls as the lower process, and the interface system as the interaction process between the continuous system as the low level and the discrete event system as the high level. The reference motion commands for autonomous navigation are generated by the abstracted motion in the discrete event system. The motion control tasks including the feasible path planning and autonomous motion control with various initial conditions are investigated as the applications by the simulation studies.

  • PDF

Path Planning of Autonomous Mobile Robot (자율 이동 로봇의 경로 계획)

  • Lee, Joo-Ho;Seo, Sam-Joon;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.866-870
    • /
    • 1995
  • To make a mobile robot to get to a goal point, path which connects the mobile robot and the goal point is needed and a path planning is necessary. There are various kinds of a path planning. Well known methods are skeleton method, cell decomposition method and potential field method. But each method has both fortes and defects. In this paper, we propose a new method of path planning to find a path for mobile robot. It is obtained by modifying a Voronoi diagram. An original Voronoi diagram can make a safe path but its result is not satisfied. First defect of path, finded by the original Voronoi diagram, is sulplus of safty which make a path longer. Second defect is that the original Voronoi diagram method has a problem of connecting the Voronoi daigram with start/goal point of mobile robot. These defects are removed in proposed algorithm in this paper. We define a function to show the quality of paths. And by computer simulation, paths are compared and its result are shown.

  • PDF

Real-Time Obstacle Avoidance of Autonomous Mobile Robot and Implementation of User Interface for Android Platform (자율주행 이동로봇의 실시간 장애물 회피 및 안드로이드 인터페이스 구현)

  • Kim, Jun-Young;Lee, Won-Chang
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.4
    • /
    • pp.237-243
    • /
    • 2014
  • In this paper we present an real-time obstacle avoidance technique of autonomous mobile robot with steering system and implementation of user interface for mobile devices with Android platform. The direction of autonomous robot is determined by virtual force field concept, which is based on the distance information acquired from 5 ultrasonic sensors. It is converted to virtual repulsive force around the autonomous robot which is inversely proportional to the distance. The steering system with PD(proportional and derivative) controller moves the mobile robot to the determined target direction. We also use PSD(position sensitive detector) sensors to supplement ultrasonic sensors around dead angle area. The mobile robot communicates with Android mobile device and PC via Ethernet. The video information from CMOS camera mounted on the mobile robot is transmitted to Android mobile device and PC. And the user can control the mobile robot manually by transmitting commands on the user interface to it via Ethernet.

Sonar Map Construction for Autonomous Mobile Robots Using Data Association Filter (데이터 연관 필터를 이용한 자율이동로봇의 초음파지도 작성)

  • Lee Yu-Chul;Lim Jong-Hwan;Cho Dong-Woo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.9
    • /
    • pp.539-546
    • /
    • 2005
  • This paper describes a method of building the probability grid map for an autonomous mobile robot using the ultrasonic DAF(data association filter). The DAF, which evaluates the association of each data with the rest and removes the data affected by the specular reflection effect, can improve the reliability of the data for the Probability grid map. This method is based on the evaluation of possibility that the acquired data are all from the same object. Namely, the data from specular reflection have very few possibilities of detecting the same object, so that they are excluded from the data cluster during the process of the DAF. Therefore, the uncertain data corrupted by the specular reflection and/or multi-path effect, are not used to update the probability map, and hence building a good quality of a grid map is possible even in a specular environment. In order to verify the effectiveness of the DAF, it was applied to the Bayesian model and the orientation probability model which are the typical ones of a grid map. We demonstrate the experimental results using a real mobile robot in the real world.

Development of Fuzzy Streering Controller for Outdoor Autonomous Mobile Robot with MR sensor (MR센서를 이용한 실외형 자율이동 로봇의 퍼지 조향제어기 개발)

  • Kim, Jeong-Heui;Son, Seok-Jun;Lim, Young-Cheol;Kim, Tae-Gon;Ryoo, Young-Jae;Kim, Eui-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2365-2368
    • /
    • 2001
  • This paper describes a fuzzy steering controller for an autonomous mobile robot with MR sensor. Using the magnetic field($B_{x}$, $B_{y}$, $B_{z}$) obtained from the MR sensor, we designed fuzzy controller for driving on the road center. Fuzzy rule base was built to magnetic field($B_{x}$, $B_{y}$, $B_{z}$). To develop an autonomous mobile robot simulation program, we have done modeling MR sensor, dynamic model of mobile robot and coordinate transformation. A computer simulation of the robot (including mobile robot dynamics and steering) was used to verify the steering performance of the mobile robot controller using the fuzzy logic. Good results were obtained by computer simulation. So, we confirmed the robustness of the proposed fuzzy controller by computer simulation. Also, we know that proposed control algorithm was applied to real autonomous mobile robot.

  • PDF

A Study on the Analysis of TEB Local Planner Parameters to Improve the Target Reach Time of Autonomous Mobile Robot (자율주행 이동로봇의 목표 도달 시간을 개선하기 위한 TEB Local Planner 파라미터의 분석에 관한 연구)

  • Roh, Hyeong-Seok;Jung, Ui;Han, Jung-Min;Jeon, Jung-Hyeon;Jeon, Ho-Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.853-859
    • /
    • 2022
  • In this study, we analyzed the instantaneous trajectory generation capability and target arrival rate of a mobile robot by changing the parameter of the TEB (Timed Elastic Band) Local Planner among local planners that affect the instantaneous obstacle avoidance ability of the mobile robot using ROS (Robot Operating System) simulation and real experience. As a result, we can expect a decrease in the target arrival time of the mobile robot through a decrease in the parameter values of the TEB Local Planner's min_obstacle_dist, inflation_dist, and penalty_epsilon. However, if this parameter is reduced too much, the risk of obstacle collision of the moving robot is increases, so it is important to combine the appropriate values to construct the parameter.

Development of self-driving fan using face and hand gesture recognition (얼굴 및 손동작 인식 활용한 자율주행 선풍기 개발)

  • So-jeong Kim;Hyeong-guk Jo;Woo-hyuk Kim;Jae-jun Bae;Chang-woo Kim;Seok-hwan Go;Young-seok Jung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.261-262
    • /
    • 2023
  • 거동이 불편한 사람의 경우 직접적인 제어보다 손동작으로 간접적인 제어를 함으로써 생활에 어려움이 줄고 편리한 사용이 가능하다. 사람을 인식 후 판단하고 제어가 가능할 뿐만 아니라 손동작 인식이 가능한 선풍기가 사람들에게 더 편하게 활용되고, 간단한 동작으로 제어할 수 있다. 본 논문에서는 Mediapipe를 활용하여 간단한 손동작을 바탕으로 실시간으로 풍속을 제어하고 사람을 인식하는 기능을 제공한다. 야외나 에어컨이 없는 장소의 경우 SLAM을 활용해 주행이 가능한 이동식 선풍기를 개발했다. 기존의 선풍기의 직접적인 조작 제어가 불편한 것이 누구나 쉽게 간단한 손동작을 통해 먼 거리에서의 인식을 통한 제어와 이동 기능이 기존 기능에 비해 향상됨을 기대할 수 있다.

  • PDF

Mobile Robot Localization and Mapping using Scale-Invariant Features (스케일 불변 특징을 이용한 이동 로봇의 위치 추정 및 매핑)

  • Lee, Jong-Shill;Shen, Dong-Fan;Kwon, Oh-Sang;Lee, Eung-Hyuk;Hong, Seung-Hong
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.7-18
    • /
    • 2005
  • A key component of an autonomous mobile robot is to localize itself accurately and build a map of the environment simultaneously. In this paper, we propose a vision-based mobile robot localization and mapping algorithm using scale-invariant features. A camera with fisheye lens facing toward to ceiling is attached to the robot to acquire high-level features with scale invariance. These features are used in map building and localization process. As pre-processing, input images from fisheye lens are calibrated to remove radial distortion then labeling and convex hull techniques are used to segment ceiling region from wall region. At initial map building process, features are calculated for segmented regions and stored in map database. Features are continuously calculated from sequential input images and matched against existing map until map building process is finished. If features are not matched, they are added to the existing map. Localization is done simultaneously with feature matching at map building process. Localization. is performed when features are matched with existing map and map building database is updated at same time. The proposed method can perform a map building in 2 minutes on $50m^2$ area. The positioning accuracy is ${\pm}13cm$, the average error on robot angle with the positioning is ${\pm}3$ degree.

  • PDF

Locomotive Mechanism Based on Pneumatic Actuators for the Semi-Autonomous Endoscopic System (자율주행 내시경을 위한 공압 구동방식의 이동메카니즘)

  • Kim, Byungkyu;Kim, Kyoung-Dae;Lee, Jinhee;Park, Jong-Oh;Kim, Soo-Hyun;Hong, Yeh-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.345-350
    • /
    • 2002
  • In recent years, as changing the habit of eating, the pathology in the colon grows up annually. The colonoscopy is generalized, but if requires much time to acquire a dexterous skill to perform an operation and the procedure is painful to the patient. biomedical and robotic researchers are developing a locomotive colonoscope that can travel safe1y in colon. In this paper, we propose a new actuator and concept of semi-autonomous colonoscope. The micro robot comprises camera and LED for diagnosis, steer- ing system to pass through the loop, pneumatic actuator and bow-shaped flexible supporters to control a contact force and to pass over haustral folds in colon. For locomotion of semi-autonomous colonoscope, we suggest an actuator that is based on impact force between a cylinder and a piston. In order to validate the concept and the performance of the actuator, we carried out the simulation of moving characteristics and the preliminary experiments in rigid pipes and on the colon of pig.

An Evolution of Cellular Automata Neural Systems using DNA Coding Method (DNA 코딩방법을 이용한 셀룰라 오토마타 신경망의 진화)

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.12
    • /
    • pp.10-19
    • /
    • 1999
  • Cellular Automata Neural Systems(CANS) are neural networks based on biological development and evolution. Each neuron of CANS has local connection and acts as a form of pulse according to the dynamics of the chaotic neuron. CANS are generated from initial cells according to the CA rule. In the previous study, to obtain the useful ability of CANS, we make the pattern of initial cells evolve. However, it is impossible to represent all solution space, so we propose an evolving method of CA rule to overcome this defect in this paper. DNA coding has the redundancy and overlapping of gene and is apt for the representation of the rule. In this paper, we show the general expression of CA rule and propose translation method from DNA code to CA rule. The effectiveness of the proposed scheme was verified by applying it to the navigation problem of autonomous mobile robot.

  • PDF