• Title/Summary/Keyword: 자율주행 시범운행지구

Search Result 5, Processing Time 0.017 seconds

Traffic Operation Strategy for the Mixed Traffic Flow on Autonomous Vehicle Pilot Zone: Focusing on Pangyo Zero City (자율주행차 혼재 시 시범운행지구 교통운영전략 수립: 판교제로시티를 중심으로)

  • Donghyun Lim;Woosuk Kim;Jongho Kim;Hyungjoo Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.172-191
    • /
    • 2023
  • This study was undertaken to strategize the mixed traffic operation of autonomous vehicles in the pilot zone. This was achieved by analyzing the changes expected when autonomous vehicles are mixed in the autonomous vehicle pilot zone. Although finding a safe and efficient traffic operation strategy is required for the pilot zone to serve as a test bed for autonomous vehicles, there is no available operation strategy based on the mixture of autonomous vehicles. In order to presents a traffic operation strategies for each period of autonomous vehicle introduction, traffic efficiency and safety analysis was performed according to the autonomous vehicle market percentage rate. Based on the analysis results, the introduction stage was divided into introductory stage, transition period, and stable period based on the autonomous vehicle market share of 30% and 70%. This study presents the following traffic operation strategies. Considering the traffic flow operation strategy, we suggest the advancement of the existing road infrastructure at the introductory stage, and operating an autonomous driving lane and the mileage system during the transition period. We also propose expanding the operation of autonomous driving lanes and easing the speed limit during the stable period. In the traffic safety strategy, we present a manual and legal system for responding to autonomous vehicle accidents in the introductory stage, an analysis of the causes of autonomous vehicle accidents and the implementation of preventive policies in the transition period, and the advancement of the autonomous system and the reinforcement of the security system during the stable period. Through the traffic operation strategy presented in this study, we foresee the possibility of preemptively responding to the changes of traffic flow and traffic safety expected due to the mixture of autonomous vehicles in the autonomous vehicle pilot zone in the future.

A Study on Operational Design Domain Classification System of National for Autonomous Vehicle of Autonomous Vehicle (자율주행을 위한 국내 ODD 분류 체계 연구)

  • Ji-yeon Lee;Seung-neo Son;Yong-Sung Cho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.195-211
    • /
    • 2023
  • For the commercialization For the commercialization of autonomous vehicles (AV), the operational design domain (ODD) of automated driving systems (ADS) is to be clearly defined. A common language and consistent format must be prepared so that AV-related stakeholders can understand ODD at the same level. Therefore, overseas countries are presenting a standardized ODD framework and developing scenarios that can evaluate ADS-specific functions based on ODD. However, ODD includes conditions reflecting the characteristics of each country, such as road environment, weather environment, and traffic environment. Thus, it is necessary to clearly understand the meaning of the items defined overseas and to harmonize them to reflect the specific domestic conditions. Therefore, in this study, domestic optimization of the ODD classification system was performed by analyzing the domestic driving environment based on international standards. The driving environment of currently operating self-driving car test districts (Sangam, Seoul, and Gwangju) was investigated using the developed domestic ODD items. Then, based on the results obtained, the ranges of the ODDs in each test district were determined and compared.

Comparison Analysis of the Road Environment between Urban and Suburban Area for Connected and Automated Driving(CAD) Mobility Services (교통소외지역 자율주행 모빌리티 서비스를 위한 도로 환경 분석 : 대구광역시와 세종특별자치시를 중심으로)

  • Kim, Ahreum;Woo, Boram;Tak, Sehyun;Lim, Seohyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.287-300
    • /
    • 2022
  • The introduction of Connected and Automated(CAD) technology has a growing interests especially in areas with low demand for transport, where often the local transport services do not connect to peripheral areas for more efficient and convenient mobility services. However, there are few researches on CAD-based mobility services in areas with low demand for transport. Because current researches are mainly focuses on introduction of CAD-based mobility services in area with high demand for transport such as urban and highway. These two areas have different road environments and these differences require different driving technology especially related to Operational Design Domain(ODD). ODD is important factors for introduction of CAD-based mobility services. Therefore, we compare the road environments of areas with low demand for transport and areas with high demand for transport in terms of ODD. In addition, this paper proposes suggest guidance for the introduction of CAD-based mobility services in areas with low demand for transport such as rural and suburban areas.

Spatial Factors' Analysis of Affecting on Automated Driving Safety Using Spatial Information Analysis Based on Level 4 ODD Elements (Level 4 자율주행서비스 ODD 구성요소 기반 공간정보분석을 통한 자율주행의 안전성에 영향을 미치는 공간적 요인 분석)

  • Tagyoung Kim;Jooyoung Maeng;Kyeong-Pyo Kang;SangHoon Bae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.182-199
    • /
    • 2023
  • Since 2021, government departments have been promoting Automated Driving Technology Development and Innovation Project as national research and development(R&D) project. The automated vehicles and service technologies developed as part of these projects are planned to be subsequently provided to the public at the selected Living Lab City. Therefore, it is important to determine a spatial area and operation section that enables safe and stable automated driving, depending on the purpose and characteristics of the target service. In this study, the static Operational Design Domain(ODD) elements for Level 4 automated driving services were reclassified by reviewing previously published papers and related literature surveys and investigating field data. Spatial analysis techniques were used to consider the reclassified ODD elements for level 4 in the real area of level 3 automated driving services because it is important to reflect the spatial factors affecting safety related to real automated driving technologies and services. Consequently, a total of six driving mode changes(disengagement) were derived through spatial information analysis techniques, and the factors affecting the safety of automated driving were crosswalk, traffic light, intersection, bicycle road, pocket lane, caution sign, and median strip. This spatial factor analysis method is expected to be useful for determining special areas for the automated driving service.

A Comparative Analysis of Mobility Service Satisfaction by Driving Subjects and Experiences of the Latest Technology : Focused on Automated Driving Service (모빌리티 서비스의 운전 주체 및 신기술 경험 여부에 따른 만족도 비교분석 : 자율주행서비스를 중심으로)

  • KIM, Tagyoung;SEO, Jihun;BANG, Soohyuk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.103-116
    • /
    • 2022
  • The South Korean Ministry of Land, Infrastructure, and Transport designated seven automated driving test beds required to evaluate vehicle performance every year for the expansion of mobility services based on automated driving. As a fundamental study, we suggested a necessary example of evaluating the performance with a satisfaction survey for the services before the evaluation. First, we surveyed the perception of automated driving services of users and the public in Sejong-si, South Korea. The survey showed that the users had a higher level of awareness of automated driving technology and intention to use it than the public. Second, the satisfaction survey was conducted on demand-responsive public transportation and automated driving service users. Notably, using the Wilcoxon Rank Sum Test, among the non-parametric statistical analysis methods, we found that safety-related factors affected the overall satisfaction of users of automated driving services. On the other hand, in the case of the demand-responsive public transportation service users, factors related to service convenience affected overall satisfaction. Hence, the results of these surveys are expected to be used as basic data and guidelines to improve the quality of automated driving services and policy establishment.