• Title/Summary/Keyword: 자율주행과 이동

Search Result 347, Processing Time 0.03 seconds

Indoor Map Making Using Range Sensor of a Mobile Robot (이동 로봇의 영역센서를 이용한 실내 지도 작성)

  • Ko, Nak-Yong;Seo, Dong-Jin;Kim, Kwang-Jin;Moon, Yong-Seon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.370-372
    • /
    • 2008
  • 본 연구에서는 이동 로봇에 영역 센서를 장착하여 실내에서 주변환경을 인식하여 지도를 작성하는 방법을 제안한다. 이동 로봇이 미지의 환경에서 자율 주행하기 위해서는 로봇 환경에 대한 지도를 작성하면서 이 지도 상에서 로봇의 위치를 인식할 수 있어야한다. 지도 작성과 위치 인식을 동시에 수행하는 SLAM을 구현하기위한 준비단계로서 본 논문에서는 일정한 시간 간격으로 연속적인 센서 신호들로 부터 동일 특징을 추출하고 이들을 서로 일치시켜서 로봇 이동 및 센서 신호에 불확실성이 있는 경우에도 지도를 작성하는 방법을 연구한다. 실제로 레이저 영역 센서를 장착한 이동 로봇을 이용하여 실내에서 지도를 작성하는 실험을 통하여 제안된 방법의 성능을 검증한다.

  • PDF

Localization of Autonomous Mobile Robot Using Sonar Sensors (초음파 센서를 이용한 자율 이동로봇의 위치추적)

  • Yu, Yeong-Seon;Kim, Jong-Seon;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1775-1776
    • /
    • 2007
  • 본 논문에서는 이동로봇에 장착된 초음파센서 모듈을 이용하여 실내 환경에 대한 기본적인 지도를 작성하고, 작성된 지도를 바탕으로 이동로봇의 위치를 추적하는 방법을 제안한다. 이동로봇은 실내 주행 중에 초음파센서로부터 얻어진 일반적인 거리정보를 가지고 격자지도를 작성한다. 작성된 지도를 바탕으로 다양한 형태와 불확실한 장애물을 표현하기에 적합한 확률적 표현을 이용한 몬테카를로 위치측정 기법을 사용하여 이동로봇의 위치를 측정한다. 제시된 방법을 이용하여 실내환경에서의 실험을 통하여 이동로봇의 위치를 측정하여 효율성을 평가한다.

  • PDF

Detection Algorithm of Road Damage and Obstacle Based on Joint Deep Learning for Driving Safety (주행 안전을 위한 joint deep learning 기반의 도로 노면 파손 및 장애물 탐지 알고리즘)

  • Shim, Seungbo;Jeong, Jae-Jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.2
    • /
    • pp.95-111
    • /
    • 2021
  • As the population decreases in an aging society, the average age of drivers increases. Accordingly, the elderly at high risk of being in an accident need autonomous-driving vehicles. In order to secure driving safety on the road, several technologies to respond to various obstacles are required in those vehicles. Among them, technology is required to recognize static obstacles, such as poor road conditions, as well as dynamic obstacles, such as vehicles, bicycles, and people, that may be encountered while driving. In this study, we propose a deep neural network algorithm capable of simultaneously detecting these two types of obstacle. For this algorithm, we used 1,418 road images and produced annotation data that marks seven categories of dynamic obstacles and labels images to indicate road damage. As a result of training, dynamic obstacles were detected with an average accuracy of 46.22%, and road surface damage was detected with a mean intersection over union of 74.71%. In addition, the average elapsed time required to process a single image is 89ms, and this algorithm is suitable for personal mobility vehicles that are slower than ordinary vehicles. In the future, it is expected that driving safety with personal mobility vehicles will be improved by utilizing technology that detects road obstacles.

Evaluating a Positioning Accuracy of Roadside Facilities DB Constructed from Mobile Mapping System Point Cloud (Mobile Mapping System Point Cloud를 활용한 도로주변 시설물 DB 구축 및 위치 정확도 평가)

  • KIM, Jae-Hak;LEE, Hong-Sool;ROH, Su-Lae;LEE, Dong-Ha
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.99-106
    • /
    • 2019
  • Technology that cannot be excluded from 4th industry is self-driving sector. The self-driving sector can be seen as a key set of technologies in the fourth industry, especially in the DB sector is getting more and more popular as a business. The DB, which was previously produced and managed in two dimensions, is now evolving into three dimensions. Among the data obtained by Mobile Mapping System () to produce the HD MAP necessary for self-driving, Point Cloud, which is LiDAR data, is used as a DB because it contains accurate location information. However, at present, it is not widely used as a base data for 3D modeling in addition to HD MAP production. In this study, MMS Point Cloud was used to extract facilities around the road and to overlay the location to expand the usability of Point Cloud. Building utility poles and communication poles DB from Point Cloud and comparing road name address base and location, it is believed that the accuracy of the location of the facility DB extracted from Point Cloud is also higher than the basic road name address of the road, It is necessary to study the expansion of the facility field sufficiently.

Study on Design of Mobile Robot for Autonomous Freight Transportation (무인 화물이송 이동로봇의 설계에 관한 연구)

  • Jeong, Dong-Hyuk;Park, Jin-Il;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.202-207
    • /
    • 2013
  • In the paper, we design a autonomous mobile robot for freight transportation and propose an operation method of the robot in the warehouse. In order to implement autonomous navigation, it is needed to recognize the position of the robot and track the path to the target. Previous methods are hard to change the workspace environment and need high cost to install and keep a maintenance of the system. The lifter of freight transportation robot is designed to load and unload a baggage through up and down motion. Also, ultrasonic sensor, RFID, QR-code and camera sensor is used to carry out various functions while the robot navigates in the various environment. We design an operation method of the mobile robot in order to effectively arrive a goal position and transport a freight. The proposed methods are verified through various experiments.

Roundabout Design and Intervehicle Distance Measure for V2X-based Autonomous Driving (V2X 기반 자율운전을 위한 회전교차로 설계 및 차간 거리 측정)

  • Hwang, Jae-Jeong;Oh, Seok-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.83-89
    • /
    • 2021
  • To improve the performance of self-driving cars, the introduction of V2X, a communication technology that connects vehicles, infrastructure, and vehicles, is essential. Even if traffic information of the other vehicle is known, the structure of the intersection and a distance calculation algorithm are required for accurate calculations at roundabouts. This paper proposes a design algorithm for a rotating intersection and implemented in Matlab that complies with the national design rules and enables accurate calculations. Assuming the roundabout and the entrance/exit path to be a circle, a method for measuring the distance between vehicles at an arbitrary point was proposed using the horizontal shift of the entrance circle to the main circle. The algorithm could be used in fully autonomous vehicles by designing a roundabout suitable for the terrain by arbitrarily varying the angle between branches and the radius of curvature of the entrance and exit roads, and transmitting a warning signal when a collision between two driving vehicles is expected.

Real-time Measurement Model of Indoor Environment Using Ultrasonic Sensor (초음파 센서를 이용한 실내 환경 실시간 계측 모델)

  • Lee Man hee;Cho Whang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6A
    • /
    • pp.481-487
    • /
    • 2005
  • In order to increase the autonomous navigation capability of a mobile robot, it is very crucial to develop a method for recognizing a priori known environmental characteristics. This paper proposes an ultrasonic sensor based real-time method for recognizing a priori known indoor environmental characteristics like a wall and corner. The ultrasonic sensor consists of an ultrasonic transmitter and two ultrasonic receivers placed symmetrically about the transmitter. Unlike previous methods the information obtained from the sensor is processed in real-time by extended Kalman filter to be able to correct the position and orientation of robot with respect to known environmental characteristics.

A Via Point Generation Method for Road Navigation of Unmanned Vehicles (무인 차량의 도로주행을 위한 경유점 생성 방법)

  • Choi, Hyuk-Doo;Park, Nam-Hun;Kim, Jong-Hui;Park, Yong-Woon;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.161-167
    • /
    • 2012
  • This research deals with generating via points for autonomous navigation on a roadway for unmanned vehicles. When a vehicle plans a path from a starting point to a goal point, it should be able to map out which lane on which road it passes by. For this purpose, we should organize positional information of roads and save it as a database. This paper presents methods to save the database and to plan a shortest path to the goal by generating via points in consideration of the moving direction and the lane directions. Then we prove that the proposed algorithm can find the optimal path on the road through simulations.

Detection of Nearest Points without Obstacle Segmentation using Active Min-Depth Filter (Active Min-Depth Filter를 이용한 비분할 장애물 최근접 점 검출)

  • Kyung-Kyoon Park;Mun-Ho Jeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.77-84
    • /
    • 2023
  • In autonomous robots, obstacle avoidance is a key feature. Potential Field is the most widely used method in this field. Such method requires real-time calculation of the nearest point of the obstacle from the robot, which involves difficulty of reliably segmenting the obstacle region from the distance sensor data profile. In this paper, Active Min-Depth Filter is introduced to obtain the nearest point of each obstacle using real-time calculation but without segmentation. Through simulations on various sensor noise environments, the robustness of the Active Min-Depth Filter could be confirmed, and successful results were obtained by applying real-world moving robots.

Design of a Web-based Autonomous Under-water Mobile Robot Controller Using Neuro-Fuzzy in the Dynamic Environment (동적 환경에서 뉴로-퍼지를 이용한 웹 기반 자율 잠수 이동로봇 제어기 설계)

  • 최규종;신상운;안두성
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.1
    • /
    • pp.77-83
    • /
    • 2003
  • Autonomous mobile robots based on the Web have been already used in public places such as museums. There are many kinds of problems to be solved because of the limitation of Web and the dynamically changing environment. We present a methodology for intelligent mobile robot that demonstrates a certain degree of autonomy in navigation applications. In this paper, we focus on a mobile robot navigator equipped with neuro-fuzzy controller which perceives the environment, make decisions, and take actions. The neuro-fuzzy controller equipped with collision avoidance behavior and target trace behavior enables the mobile robot to navigate in dynamic environment from the start location to goal location. Most telerobotics system workable on the Web have used standard Internet techniques such as HTTP, CGI and Scripting languages. However, for mobile robot navigations, these tools have significant limitations. In our study, C# and ASP.NET are used for both the client and the server side programs because of their interactivity and quick responsibility. Two kinds of simulations are performed to verify our proposed method. Our approach is verified through computer simulations of collision avoidance and target trace.