• Title/Summary/Keyword: 자율주차시스템

Search Result 15, Processing Time 0.018 seconds

Development of a parking control system that improves the accuracy and reliability of vehicle entry and exit based on LIDAR sensing detection

  • Park, Jeong-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.9-21
    • /
    • 2022
  • In this paper, we developed a 100% detection system for entering and leaving vehicles by improving the detection rate of existing detection cameras based on the LiDAR sensor, which is one of the core technologies of the 4th industrial revolution. Since the currently operating parking lot depends only on the recognition rate of the license plate number of about 98%, there are various problems such as inconsistency in the entry/exit count, inability to make a reservation in advance due to inaccurate information provision, and inconsistency in real-time parking information. Parking status information should be managed with 100% accuracy, and for this, we built a parking lot entrance/exit detection system using LIDAR. When a parking system is developed by applying the LIDAR sensor, which is mainly used to detect vehicles and objects in autonomous vehicles, it is possible to improve the accuracy of vehicle entry/exit information and the reliability of the entry/exit count with the detected sensing information. The resolution of LIDAR was guaranteed to be 100%, and it was possible to implement so that the sum of entering (+) and exiting (-) vehicles in the parking lot was 0. As a result of testing with 3,000 actual parking lot entrances and exits, the accuracy of entering and exiting parking vehicles was 100%.

Comparisonal Analysis of Path Planning Methods for Automatic Parking Control of a Car-Like Mobile Robot (자동주차를 위한 차량형 자율주행 로봇에 적합한 경로계획법의 비교분석)

  • Kwon, Hyun-Ki;Chung, Woo-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.267-274
    • /
    • 2012
  • We proposed the KPP (Korea university Path Planner) in our previous works. The KPP is the path planning scheme of a car-like mobile robot in parking environment. The objective of this paper is to investigate the advantage of the KPP through the quantitative and qualitative analysis compared with conventional RRT. For comparison, we proposed travel time for performance index. This paper shows that the KPP shows outstanding performances from the viewpoint of travel time and computational efficiency compared with RRT.

A Real-time Vehicle Localization Algorithm for Autonomous Parking System (자율 주차 시스템을 위한 실시간 차량 추출 알고리즘)

  • Hahn, Jong-Woo;Choi, Young-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.31-38
    • /
    • 2011
  • This paper introduces a video based traffic monitoring system for detecting vehicles and obstacles on the road. To segment moving objects from image sequence, we adopt the background subtraction algorithm based on the local binary patterns (LBP). Recently, LBP based texture analysis techniques are becoming popular tools for various machine vision applications such as face recognition, object classification and so on. In this paper, we adopt an extension of LBP, called the Diagonal LBP (DLBP), to handle the background subtraction problem arise in vision-based autonomous parking systems. It reduces the code length of LBP by half and improves the computation complexity drastically. An edge based shadow removal and blob merging procedure are also applied to the foreground blobs, and a pose estimation technique is utilized for calculating the position and heading angle of the moving object precisely. Experimental results revealed that our system works well for real-time vehicle localization and tracking applications.

Wireless LAN-based Vehicle Location Estimation in GPS Shading Environment (GPS 음영 환경에서 무선랜 기반 차량 위치 추정 연구)

  • Lee, Donghun;Min, Kyungin;Kim, Jungha
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.1
    • /
    • pp.94-106
    • /
    • 2020
  • Recently, the radio navigation method utilizing the GPS(Global Positioning System) satellite information is widely used as the method to measure the position of objects. As GPS applications become wider and fields based on various positioning information emerge, new methods for achieving higher accuracy are required. In the case of autonomous vehicles, the INS(Inertial Navigation System) using the IMU(Inertial Measurement Unit), and the DR(Dead Reckoning) algorithm using the in-vehicle sensor, are used for the purpose of preventing degradation of accuracy of the GPS and to measure the position in the shadow area. However, these positioning methods have many elements of problems due not only to the existence of various shaded areas such as building areas that are continually enlarged, tunnels, underground parking lots and but also to the limitations of accumulation-based location estimation methods that increase in error over time. In this paper, an efficient positioning method in a large underground parking space using Fingerprint method is proposed by placing the AP(Access Points) and directional antennas in the form of four anchors using WLAN, a popular means of wireless communication, for positioning the vehicle in the GPS shadow area. The proposed method is proved to be able to produce unchanged positioning results even in an environment where parked vehicles are moved as time passes.

A study on the Construction of a Big Data-based Urban Information and Public Transportation Accessibility Analysis Platforms- Focused on Gwangju Metropolitan City - (빅데이터 기반의 도시정보·접대중교통근성 분석 플랫폼 구축 방안에 관한 연구 -광주광역시를 중심으로-)

  • Sangkeun Lee;Seungmin Yu;Jun Lee;Daeill Kim
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.49-62
    • /
    • 2022
  • Recently, with the development of Smart City Solutions such as Big data, AI, IoT, Autonomous driving, and Digital twins around the world, the proliferation of various smart devices and social media, and the record of the deeds that people have left everywhere, the construction of Smart Cities using the "Big Data" environment in which so much information and data is produced that it is impossible to gauge the scale is actively underway. The Purpose of this study is to construct an objective and systematic analysis Model based on Big Data to improve the transportation convenience of citizens and formulate efficient policies in Urban Information and Public Transportation accessibility in sustainable Smart Cities following the 4th Industrial Revolution. It is also to derive the methodology of developing a Big Data-Based public transport accessibility and policy management Platform using a sustainable Urban Public DB and a Private DB. To this end, Detailed Living Areas made a division and the accessibility of basic living amenities of Gwangju Metropolitan City, and the Public Transportation system based on Big Data were analyzed. As a result, it was Proposed to construct a Big Data-based Urban Information and Public Transportation accessibility Platform, such as 1) Using Big Data for public transportation network evaluation, 2) Supporting Transportation means/service decision-making based on Big Data, 3) Providing urban traffic network monitoring services, and 4) Analyzing parking demand sources and providing improvement measures.