• Title/Summary/Keyword: 자율운동 시스템

Search Result 53, Processing Time 0.024 seconds

Wireless Transmitter earpiece for Sensibility Ergonomics (감성공학을 위한 무선 이어폰 전송 장치)

  • Lim, Chae-Young;Jeon, Ki-Man;Kim, Kyung-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.06a
    • /
    • pp.273-276
    • /
    • 2011
  • 우리는 감성 공학에 기반하여 일상 생활 속에서 비침습적이면서 사용하기 간편한 광전용적맥파신호를 계측하고 분석하는 이어폰형 생체 신호 측정 시스템에 관하여 연구하였다. 생체 신호 측정 시스템에서는 광전용적맥파(photoplethysmograph, PPG)와 3축 가속도로 생체 신호와 운동 신호를 활용하였다. 수신된 생체 신호인 광전용적맥파 신호는 Peak 검출 및 전처리 알고리즘을 통하여 심박동변동성(heart rate Variablity,HRV)에 대한 시계열 정보로 변환하고 고속 퓨리에 변환(Fast Fourier Transfirm, FFT)과 전력 스펙트럼 밀도 분석(Power Spectrum Density, PSD)방법으로 교감과 부교감 신경 활성도 변화를 관측하였고, 운동 센서로 움직임을 관측하였다. 수신부 시스템은 안드로이드 기반의 자바 어플리케이션으로 스마트 폰에서 구현하였고, 송신부인 이어폰 생체정보 측정모듈로 맥파를 측정하여 상황에 따라 변화하는 자율 신경계의 활성도비율을 확인하였다.

  • PDF

Programming Toolkit for Localization and Simulation of a Mobile Robot (이동 로봇 위치 추정 및 시뮬레이션 프로그래밍 툴킷)

  • Jeong, Seok Ki;Kim, Tae Gyun;Ko, Nak Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.332-340
    • /
    • 2013
  • This paper reports a programming toolkit for implementing localization and navigation of a mobile robot both in real world and simulation. Many of the previous function libraries are difficult to use because of their complexity or lack of usability. The proposed toolkit consist of functions for dead reckoning, motion model, measurement model, and operations on directions or heading angles. The dead reckoning and motion model deals with differential drive robot and bicycle type robot driven by front wheel or rear wheel. The functions can be used for navigation in both real environment and simulation. To prove the feasibility of the toolkit, simulation results are shown along with the results in real environment. It is expected the proposed toolkit is used for test of algorithms for mobile robot navigation such as localization, map building, and obstacle avoidance.

Development of Sailing Algorithm for Ship Group Navigation System (선박 그룹항해시스템의 항법 알고리즘 개발)

  • Wonjin, Choi;Seung-Hwan, Jun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.554-561
    • /
    • 2022
  • Technology development related to maritime autonomous surface ships (MASS) is actively progressing around the world. However, since there are still many technically unresolved problems such as communication, cybersecurity, and emergency response capabilities, it is expected that it will take a lot of time for MASS to be commercialized. In this study, we proposed a ship group navigation system in which one leader ship and several follower ship are grouped into one group. In this system, when the leader ship begins to navigate, the follower ship autonomously follows the path of the leader ship. For path following, PD (proportional-derivative) control is applied. In addition, each ship navigates in a straight line shape while maintaining a safe distance to prevent collisions. Speed control was implemented to maintain a safe distance between ships. Simulations were performed to verify the ship group navigation system. The ship used in the simulation is the L-7 model of KVLCC2, which has related data disclosed. And the MMG (Maneuvering Modeling Group) standard method proposed by the Japan Society of Naval Architects and Ocean Engineering (JASNAOE) was used as a model of ship maneuvering motion. As a result of the simulation, the leader ship navigated along a predetermined route, and the follower ship navigated along the leader ship's path. During the simulation, it was found that the three ships maintained a straight line shape and a safe distance between them. The ship group navigation system is expected to be used as a navigation system to solve the problems of MASS.

Field Experiments for Dynamic Characteristics and Motion Control of a Manta-type Autonomous Underwater Vehicle (만타형 자율무인잠수정의 운동성능 및 운동제어에 대한 실해역실험)

  • Kim, Dong Hee;Park, Jong Hyeon;Kim, Joon Young;Choi, Hyeung Sik;Ahn, Jin Hyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.760-767
    • /
    • 2013
  • In this paper, we developed a Manta-type AUV (Autonomous Underwater Vehicle) and analyzed its control performance as well as its dynamic characteristics underwater. The nonlinear motion of equations, which are expressed in terms of hydrodynamic coefficients obtained by various experiments, are used to simulate the motion of a Manta AUV underwater. We applied the sliding-mode theory to control the heading angle and depth of the vehicle, and confirmed the effectiveness of the control algorithm through simulations and sea-trials.

The Effects of Acute Respiratory Training Feedback upon a Change on HRV-Autonomic Nervous System in Middle-aged Women (일회성 호흡훈련 피드백이 중년여성의 HRV-자율신경시스템 변화에 미치는 영향)

  • Kim, Ji-Sun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.445-453
    • /
    • 2018
  • The purpose of this study was to analyze the effect of acute respiratory training feedback upon a change on HRV-Autonomic nervous system in middle-aged women. The research subjects were totally 24 middle-aged women(40-60 years old), were randomly allocated 12 people to the respiratory training group and 12 people to the control group, and then were carried out the acute respiratory training. The feedback exercise in the respiratory training group was conducted for totally 15 minutes. Following the 10-minute breath awareness training according to the expert's guidance, the 5-minute autonomous breathing exercise was implemented. The data analysis was carried out Repeated Measures ANOVA with SPSS WIN 20.0. The conclusions that were obtained through this are as follows. The middle-aged women got significantly higher in SDNN, RMSSD, LF, HF after the acute respiratory training. Compared to the control group. the respiratory training group was indicated to have gotten higher significantly in SDNN, RMSSD, LF, HF. Mean HR and LF/HF were not shown a significant difference in both the main effect of group & period and the interaction effect of group & period. Above of a result the acute respiratory training feedback is effective for SDNN, RMSSD, sympathetic activity, parasympathetic activity in the middle-aged women. Thereby, the respiratory training program improves autonomic nervous system, being considered to be possibly expected the effective value of exercise intervention available for relieving stress and recovering autonomic dysfunction in the middle-aged women.

Development of Attitude Heading Reference System based on MEMS for High Speed Autonomous Underwater Vehicle (고속 자율 무인잠수정 적용을 위한 MEMS 기술기반 자세 측정 장치 개발)

  • Hwang, A-Rom;Ahn, Nam-Hyun;Yoon, Seon-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.666-673
    • /
    • 2013
  • This paper proposes the performance evaluation test of attitude heading reference system (AHRS) suitable for small high speed autonomous underwater vehicle(AUV). Although IMU can provides the detail attitude information, it is sometime not suitable for small AUV with short operation time in view of price and the electrical power consumption. One of alternative for tactical grade IMU is the AHRS based micro-machined electro mechanical system(MEMS) which can overcome many problems that have inhibited the adoption of inertial system for small AUV such as cost and power consumption. A cost effective and small size AHRS which incorporates measurements from 3-axis MEMS gyroscopes, accelerometers, and 3-axis magnetometers has been developed to provide a complete attitude solution for AUV and the attitude calculation algorithm is derived based the coordinate transform equation and Kalman filter. The developed AHRS was validated through various performance tests as like the magnetometer calibration, operating experiments using land mobile vehicle and flight motion simulator (FMS). The test of magnetometer calibration shows the developed MEMS AHRS is robust to the external magent field change and the test with land vehicle proves the leveling error of developed MEMS AHRS is below $0.5^{\circ}/hr$. The results of FMS test shows the fact that AHRS provides the measurement with $0.5^{\circ}/hr$ error during 5 minutes operation time. These results of performance evaluation tests showed that the developed AHRS provides attitude information which error of roll and pitch are below $1^{\circ}$ and the error of yaw is below $5^{\circ}$ and satisfies the required specification. It is expected that developed AHRS can provide the precise attitude measurement under sea trial with real AUV.

Attitude SCAS Design for 40% Scaled Smart UAV (40% 축소형 스마트 무인기 비행제어기 설계)

  • Lee, Jang-Ho;Hwang, Tai-Won;Choi, Ji-Young;Kim, Eung-Tai
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • The control design for attitude and yaw rate of 40 % scaled SMART UA Vhas been performed. Analytic selection method for a control gain is proposed to meet the design specification of desired time response considering stability margin. The sliding mode attitude controller is also proposed and compared with the simulation results of a linear controller. Additionally, a velocity and height tracking controller is devised to prepar for the flight test.

  • PDF

Navigation of Autonomous Mobile Robot with Intelligent Controller (지능제어기를 이용한 자율 이동로봇의 운항)

  • Choi, Jeong-Won;Kim, Yeon-Tae;Lee, Suk-Gyu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.180-185
    • /
    • 2003
  • This paper proposes an intelligent navigation algorithm for multiple mobile robots under unknown dynamic environment. The proposed algorithm consists of three basic parts as follows. The first part based on the fuzzy rule generates the turning angle and moving distance of the robot for goal approach without obstacles. In the second part, using both fuzzy and neural network, the angle and distance of the robot to avoid collision with dynamic and static obstacles are obtained. The final adjustment of the weighting factor based on fuzzy rule for moving and avoiding distance of the robots is provided in the third stage. The experiments which demonstrate the performance of the proposed intelligent controller is described.

Development of a Multi-joint Robot system that enables adaptive driving of wheels and joints (주행 환경에 따라 바퀴와 관절 주행을 동적으로 변경하는 다관절 로봇 시스템 개발)

  • Sang-Eun Park;Min-Kyu Cho;Sung-Wook Park;Gun-A Lee;Seo-Hui Park
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.902-903
    • /
    • 2023
  • 장애물이나 경사지가 많은 협소 지역에서 탐사 활동을 수행하는 로봇은 험지에서도 이동할 수 있는 자율주행 방법을 필수적으로 제공해야 한다. 본 논문은 협소 지역에서 탐사와 객체 탐지를 위해 주행 상황에 따라 바퀴 주행과 관절 주행을 동적으로 변경하면서 이동하는 다관절 로봇 시스템을 제안한다. 다관절 로봇은 마찰력과 수직항력, 토크 값 등을 고려해 설계한 운동 모델을 기반으로 바퀴와 관절 이동을 변경하면서 자율적으로 주행한다. 관리자는 관제 서버를 통해 로봇이 수집한 탐사 정보를 실시간으로 확인하고 필요시 로봇의 원격제어를 수행할 수 있다. 본 연구를 통해 사람이 접근하기 어려운 협소 지역 탐사나 재난지역 인명구조 활동에 활용할 수 있기를 기대한다.

Intelligent Motion Planning System for an Autonomous Mobil Robot (자율 이동 로봇을 위한 지능적 운동 계획 시스템)

  • 김진걸;김정찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1503-1517
    • /
    • 1994
  • Intelligent Motion Planning System(IMPS) is presented for a robot to achieve an efficient path toward the given target point in two dimensional unknown environment is constructed with unrestricted obstacle shapes. IMPS consists of three components for making intelligent motion. These components are real-time motion planning algorithm based on a discontinous boundary method, fuzzy neural network decision system for heuristic knowledge representation, and world modeling with forgetting and reinforcing memory cells. First of all, in real-time motion planning algorithm, the behavior-based architectural method is used to generate subgoal. A behavior generates a subgoal independently by using the method of discontinuous boundary in sensed area. The discontinuous boundary method is a new proposed fast obstacle avoidance algorithm. The second component is fuzzy neural network decision system for accomplishing the subgoal. The heuristic rules are imbedded on the fuzzy neural network to make an intelligent decision. The last one is a forgetting, reinforcing memory technique for the construction of external world map. The activation values of all activated memory cells in grid space are decreased monotonically and after all they are burned out. Therefore, after sufficient journey, robot can have a stationary world map even if the dynaic obstacles exist. Using the IMPS, several simulations show the efficient achievement of target point in unknown enviroment with obstcles of various shapes.

  • PDF