• Title/Summary/Keyword: 자유 충격파 박리

Search Result 13, Processing Time 0.025 seconds

A Study on the Transitional Shock Separation Patterns in an Over-Expanded Nozzle (과팽창 노즐에서 발생하는 충격파 박리 패턴의 천이에 관한 연구)

  • Lee, Jong-Sung;Lijo, Vincent;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.3
    • /
    • pp.9-15
    • /
    • 2010
  • Numerical investigation was carried out on axisymmetric over-expanded rocket nozzle to predict flow fields of transitional shock separation patterns. The unsteady, compressible N-S equations with k-$\omega$ SST for turbulence model closure were solved using a fully implicit finite volume scheme. Computed results were in good agreement with previous experimental works. It was found that strong side-loads were generated during the transition of RSS to FSS due to the development of a vortex ring in the inviscid jet core region. Hysteresis phenomenon exhibited by the shock-separation patterns was also found during the start-up and shut-down processes.

A Passive Control of the Unsteady Shock-Boundary Layer Interaction in Propulsion Nozzle (추진 노즐에서 발생하는 비정상 충격파-경계층의 간섭현상의 피동제어)

  • Lee, Jong-Sung;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.211-214
    • /
    • 2011
  • In the present work, a computational study was conducted to investigate characteristic of lateral force on the flow fields inside the propulsion nozzle with step. The unsteady, compressible, axisymmetric, Navier-Stocks equations with SST k-${\omega}$ turbulence model are solved using a fully implicit finite volume scheme. In order to simulate the shut-down process of the engine, NPR is varied from 100.0 to 10.0. It is observed that the separation point and Mach-disk strongly depend on the variation of NPR, and adjusting the step lead to significantly different characteristics in the lateral forces.

  • PDF

The Effect of Transient Nozzle Pressure Ratio on the Characteristics of Unsteady Side Forces in an Over-Expanded Nozzle (압력비 변화과정이 과팽창 노즐에서 발생하는 비정상 횡력 특성에 미치는 영향)

  • Lee, Jong-Sung;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.678-681
    • /
    • 2010
  • In the present work, a numerical study is conducted to investigate the effect of the transient nozzle pressure ratio (NPR) on the flow fields inside the nozzle. The unsteady, compressible, axisymmetric, Navier-Stocks equations with SST $k-{\omega}$ turbulence model are solved using a fully implicit finite volume scheme. In order to simulate the start-up and shut-down processes of the engine, NPR is varied from 2.0 to 10.0. It is observed that the interaction patterns and the hysteresis phenomenon strongly depend on the time variation of NPR, leading to significantly different characteristics in the lateral forces.

  • PDF

A Study of Lateral Force Fluctuations in Over-Expanded Nozzle Flow (과팽창 노즐 유동에서 발생하는 측력변동에 관한 연구)

  • Lee, Jong-Sung;Cha, Yong-Su;Vincent, Lijo;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.253-256
    • /
    • 2009
  • In the present paper, experimental and numerical fundamental analyses of the occurrence of lateral force in overexpanded thrust nozzle were carried out. Investigation of the lateral force fluctuations in an thrust nozzle for the shutdown transient was presented. Wall pressure distribution and Schlieren Photographs as NPR were presented. Pressure peak is observed during transition of RSS to FSS.

  • PDF

The Effect of the Variation of Pressure Ratio on the Characteristics of Lateral Forces in an Over-Expanded Nozzle (압력비 변화과정이 과팽창 노즐에서 발생하는 횡력 변동 특성에 미치는 영향)

  • Lee, Jong-Sung;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.38-44
    • /
    • 2010
  • The shock wave and boundary layer interaction patterns in an over-expanded rocket nozzle are associated with the production of undesirable side-forces during the start-up and shut-down processes of the engine. In the present work, a computational study is carried out to investigate the effect of the transient nozzle pressure ratio (NPR) on the flow fields inside the nozzle. The unsteady, compressible, axisymmetric, Navier-Stocks equations with SST k-${\omega}$ turbulence model are solved using a fully implicit finite volume scheme. NPR is varied from 2.0 to 10.0, in order to simulate the start-up and shut-down processes of the rocket engine. It is observed that the interaction patterns and the hysteresis phenomenon strongly depend on the time variation of NPR, leading to significantly different characteristics in the lateral forces.

Aerodynamic Characteristics of Supersonic Jets Impinging on $60^{\cire}$ Wedge (꼭지각이 $60^{\cire}$인 쐐기에 충돌하는 초음속 제트의 공기역학적 특성)

  • 박종호;이택상;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.8-15
    • /
    • 2004
  • Supersonic jets impinging on $60^{\cire}$ wedge were investigated to obtain fundamental design data for jet deflector It was of interest to study flow phenomena such as shock interaction and separation induced by shear layer. Experiments using supersonic cold flow system were conducted for Schlieren flow visualization and measurement of surface pressure. Numerical results were compared with the experimental results. The major parameters are underexpansion ratio, distance from nozzle to apex and design Mach number. Flow conditions were obtained for the wedge shock to attach on or detach from the wedge. The dominant feature of flow-field is shock pattern induced by the Interaction between the wedge shock and the barrel shock.

Experimental and Computational Studies of FSS-RSS Phenomena in an Over-Expanded Nozzle (과팽창 노즐 내에 발생하는 FSS-RSS 현상에 관한 실험적 및 수치해석적 연구)

  • Lee, Jong-Sung;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.3
    • /
    • pp.56-62
    • /
    • 2010
  • The interaction patterns between shock wave and boundary layer in a rocket nozzle are mainly classified into two categories, FSS(Free Shock Separation) and RSS(Restricted Shock Separation), both of which are associated with the thrust characteristics as well as side loads of the engine. According to the previous investigations, strong side loads of the engine are produced during the period of transition from FSS to RSS or vice versa. The present work aims at investigating the unsteady behavior of the separation shock waves in a two-dimensional supersonic nozzle, using experimental method and CFD. Schlieren optical method was employed to visualize the time-mean and time-dependent shock motions in the nozzle. The unsteady, compressible N-S equations with SST K-$\omega$ turbulence closure were solved using a fully implicit finite volume scheme. The results obtained show the separation shock motions during the transition of the interaction pattern.

A Study of Supersonic Jets Impinging on Axisymmetric Cone (원뿔에 충돌하는 초음속 제트에 관한 연구)

  • Park,Jong-Ho;Lee,Taek-Sang;Kim,Yun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.26-31
    • /
    • 2003
  • In this paper, supersonic jets impinging on axisymmetric cone were investigated to obtain fundamental design data for jet deflector case of example being VTOL/STOL or rocket launch. It was of interest to study flow phenomena such as shock interactions and separation induced by shear layer. Experiments were conducted to obtain schlieren flow visualization and measurement of surface pressure. Numerical results are compared with the experimental result. The dominant feature of the flow is the shock pattern induced by the interaction between the cone shock and the barrel shock. This pattern can take a wide variety of forms depending on the structure of the free jet and strongly influences the form of the surface pressure distributions.

Study on the Lateral Force Fluctuations in a Rocket Nozzle (로켓노즐에서 발생하는 횡력변동에 관한 연구)

  • Nagdewe, Suryakant;Lee, Jong-Sung;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.315-319
    • /
    • 2009
  • Investigation of the lateral force fluctuations in an axisymmetric overexpanded compressed truncated perfect (CTP) nozzle for the shutdown transient is presented. These nozzles experience side-loads during start-up and shut-down operations, because of the flow separation at nozzle walls. Two types of flow separations such as free shock separation (FSS) and restricted shock separation (RSS) shock structure occur. A two-dimensional unsteady numerical simulation has been carried out over an axisymmetric CTP nozzle to simulate the lateral force fluctuations in nozzle during shutdown process. Reynolds Averaged Navier-Stokes equations are numerically solved using a fully implicit finite volume scheme. Governing equations are solved by coupled implicit scheme. Two equation k-$\omega$ SST turbulence model is selected. Unsteady pressure is measured at four locations along the nozzle wall. Present pressure variation compared well with the experimental data. During shutdown transient, separation pattern varies from FSS to RSS and finally returns to FSS. Several pressure peaks are observed during the RSS separation pattern. These pressure peaks generate lateral force or side loads in rocket nozzle.

  • PDF

Combustion Characteristics of Hypersonic SCRamjet Engine (극초음속 스크램제트 엔진의 연소특성)

  • 원수희;정은주;정인석;최정열
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.61-69
    • /
    • 2004
  • This paper describes numerical efforts to characterize the flame-holding and air-fuel mixing process of model SCRamjet engine combustor, where a hydrogen jet injected into a supersonic cross flow and in a cavity Combustion phenomena in a model SCRamjet engine, which has been experimentally studied at University of Queensland and Australian National University using a free-piston shock tunnel, was observed around separation region of upstream of the normal injector and inside of cavity. The results show that the separation region and cavity generates several recirculation zones, which increase the fuel-air mixing. Self ignition occurs in the separation-freestream and cavity-freestream interface.