• Title/Summary/Keyword: 자유수면형 인공 습지

Search Result 12, Processing Time 0.025 seconds

Evaluation of constructed wetlands' effectiveness based on watershed characteristics and facility size (유역특성 및 시설규모가 인공습지 효율에 미치는 영향 평가)

  • Choe, Hye-Seon;Reyes, Jett;Jeon, Min-Su;Geronimo, Nash Franz Kevin;Kim, Lee-Hyeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.457-457
    • /
    • 2021
  • 인공습지는 자연이 가진 정화기작을 인위적으로 증가시키기 위하여 조성한 자연기반해법에 해당한다. 인공습지는 습지 내 식물, 미생물, 토양 등의 상호기작에 의하여 오염물질이 제거된다. 인공습지의 오염물질저감효율은 시설의 규모와 유량, 유입물질의 부하량 수리학적 부하량, 체류시간 등의 영향을 받게 된다. 일반적으로 인공습지 적정 규모는 유역 및 기상인자의 특성과 조성목적에 고려하여 산정된다. 본 연구는 전국 35개 지역에 설치된 54개 인공습지를 선정하여 모니터링을 수행하였으며, 2011년부터 2018년에 설치된 시설이다. 54개 시설 중 도심지역에 13개, 농업지역 25개, 공업지역 3개, 상업지역 3개, 축산 10개가 설치되어있다. 습지형태는 Cell형 자유수면형 인공습지(Free Water Surface, Cell-FWS), 유로형(Flow) 자유수면형 인공습지(Cell-FWS), Cell과 Flow형이 결합된 Hybrid-FWS, 수직흐름형 인공습지(vertical flow constructed wetland)와 수평지하흐름형 인공습지(vertical flow constructed wetland)가 결합된 HYBIRD 형 습지로 구분된다. 연구결과, 일반적으로 SA/CA 비율이 클수록 오염물질의 저감효율은 증가하는 것으로 나타났다. 오염 물질별 인공습지 규모를 비교할 경우 저감효율 60%에서 인공습지의 규모는 유기물>영양염류>입자상물질 순으로 나타났다. 목표 제거효율 60%에서 SA/CA 비는 BOD에서 약 3.2%, COD에서 2.5%, SS에서 1.9%, TN 2.5%, TP 2.3%로 나타났다. 입자상물질인 SS는 유기물 및 영양염류에 비하여 유역면적 대비 시설면적이 가장 적게 나타났으며, 유기물질 제거에 큰 시설규모가 필요한 것으로 나타났다. 따라서 인공습지 설계시 유역 토지이용 및 강우특성을 고려하여 적정한 수질과 유량모니터링이 필요하며, 이를 토대로 목표 오염물질 선정이 중요한 것으로 나타났다. 또한, 농업지역의 최적화된 인공습지 위치는 임야가 20~30%, 밭이 20% 이하, 논이 10~50%를 포함하는 곳이 적정한 것으로 평가되었다. 도시지역 인공습지는 도시면적이 증가할수록 효율이 크게 변하지 않기에 가용위치가 적정한 위치로 평가된다. 인공습지의 효율은 유역의 세부 토지이용에 크게 의존하는 것으로 평가되었다. 따라서 인공습지 설계시 농업지역에서는 임야, 밭 및 논의 적정면적을 고려하여 인공습지 위치가 결정되어야 하는 것으로 나타났다.

  • PDF

Evaluation on the nutrient concentration changes along the flow path of a free surface flow constructed wetland in agricultural area (농업지역에 조성된 자유수면형 인공습지의 유로에 따른 영양염류의 변화 평가)

  • Mercado, Jean Margaret R.;Maniquiz-Redillas, Marla C.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.15 no.2
    • /
    • pp.215-222
    • /
    • 2013
  • In this study, the nutrient concentration changes along the hydrologic flow path of a free water surface flow constructed wetland (CW) treating agricultural stream runoff was investigated. Dry sampling was performed from April 2009 to November 2011 at five locations representing each treatment units of the CW. Grab water samples were analyzed for nitrogen forms such as total nitrogen (TN), total Kjeldahl nitrogen, nitrate, and ammonium; and phosphorus forms including total phosphorus (TP) and phosphate. Findings revealed that the physical properties such as temperature, dissolved oxygen and pH affected the TP retention in the CW. High nutrient reduction was observed after passing the first sedimentation zone indicating the importance of settling process in the retention of nutrients. However, it was until the 85% of the length of the CW where nutrient retention was greatest indicating the deposition of nutrients at the alternating shallow and deep marshes. TN and TP concentration seemed to increase at the final sedimentation zone (FSZ) suggesting a possible nutrient source in this segment of the CW. It was therefore recommended to reduce or possibly remove the FSZ in the CW for an optimum performance, smaller spatial allocation and lesser construction expenses for similar systems.

Application of Free Water Surface Constructed Wetland for NPS Control in Livestock Watershed Area (축산단지 비점오염물질 저감을 위한 자유수면형 인공습지 적용)

  • Lee, Jeong-Yong;Kang, Chang-Guk;Lee, So-Young;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.481-488
    • /
    • 2011
  • Various development activities have lead to the destruction of the ecosystem such as natural wetlands. In order to protect these natural wetlands, the Ministry of Environment (MOE) in Korea enacted the Wetland Conservation Act in 1999 and designated protected areas for wetland conservation. The MOE adapted the use of Best Management Practices (BMP) such as retention ponds and constructed wetlands to treat the polluted water before entering the water system. One of these projects was a free-water surface flow (FWS) constructed wetland built as a secondary treatment unit for piggery wastewater effluent coming from a livestock wastewater treatment facility. Water quality monitoring for the constructed wetland was conducted during rainfall events. The results showed that the average removal efficiencies of TSS, BOD, TN, TP were 86, 60, 45, 70%, respectively. It was observed that the removal efficiency of particulate matter and phosphorus was high compared to nitrogen. Therefore, a longer hydraulic retention time was needed in order to improve the treatment efficiency of nitrogen. The results of this study can contribute to the wetland design, operation and maintenance of constructed wetlands.

Seasonal Variation in Heavy Metal Removal Efficiency and Application of Risk Assessment for Constructed Wetlands (인공습지에서 중금속 제거율의 계절적 변동 및 위해성평가)

  • Shin, Yu-Ri;Yoon, Chun-Gyeong;Son, Yeong-Kwon;Kim, Hyung-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.57-62
    • /
    • 2010
  • 본 연구는 자유수면형 인공습지에서의 시기적인 중금속 제거율의 변동을 평가하기 위하여 수행되었다. 대상 인공습지의 유입수는 하수처리수가 포함된 하천수이다. 인공습지에는 갈대 (Phragmites australis)와 부들 (Typha latifolia)이 주로 분포하며, 이들 두 종은 습지의 95 % 이상을 차지하는 우점종이다. 2009년 5월부터 9월까지 습지의 유입과 유출부분에서 유입수와 유출수를 시료 채취하였다. 채취된 시료는 ICP-AES 방법을 이용하여 6가지 중금속을 분석하였으며, 위해성 평가를 이용하여 카드뮴 (Cd), 크롬 ($Cr^{+6}$), 비소 (As), 납 (Pb), 니켈 (Ni), 구리 (Cu)의 분석 결과를 평가하였다. 위해성평가는 농부와 레크리에이션에 대한 두가지 시나리오를 바탕으로 이루어졌다. 연평균 중금속 제거율은 계절적인 변화 측면에서 큰 변화를 나타내지 않았다. 위해성 평가 결과 시료가 채취된 부분 및 계절적인 변화 대부분에서 US EPA의 기준인 $10^{-4}$를 초과하지 않는 수준으로 허용가능한 수준이었다. 하지만, 봄철 농부에 대한 위해성평가 결과 위해도가 $10^{-4}$ 수준이며, $10^{-6}-10^{-8}$ 수준은 질병의 이동이 우려되는 수준 (US EPA)임을 감안하여, 인공습지에 중금속 농도 저감 시설의 설치를 고려해야 한다. 본 연구에서는 위해성 평가를 가상의 시나리오에 적용하여 평가를 시도함으로서, 수치적인 자료로 제시할 수 있을 뿐만 아니라 중금속의 정량적인 평가를 수행할 수 있었다. 따라서 위해성 평가는 인공습지의 안전성에 대하여 대중과 소통할 수 있는 도구로서 이용할 수 있으며, 인공습지의 효율적인 운영 및 현장 적용에 있어서 스크리닝 도구로서의 역할이 가능할 것으로 판단된다.

Analysis of water purification in the FWS wetland for Agreculture Area (농업지역 내 FWS 인공습지의 수질정화효율 분석)

  • Kang, Chang-Guk;Maniquiz, Marla C.;Son, Young-Gyu;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.39-47
    • /
    • 2010
  • Annually, the scale of agricultural areas in Korea were being reduced as the lands were converted to other land uses. While the rate of productivity were either being maintained or increased, the pollution load from these areas were still greater in magnitude. Although the levels of pollutant concentration released in the agricultural watersheds were minimal, the combined quantities mostly from diffuse sources were high. As a consequence, the Ministry of Environment (MOE) in Korea adopted the use of free water surface (FWS) flow constructed wetlands to reduce the pollutant loadings emitted from agricultural watersheds for the improvement of water quality and protection of aquatic ecosystems. In this study, a constructed wetland treating stream water in an agricultural watershed was monitored since April 2009 subsequent to its completion in December 2008. Satisfactory performance was achieved for TSS, BOD and TP with 26%, 28% and 39% pollutant removal rates, respectively. In addition, the effluent water quality was improved and achieved compliance the national water quality criteria. Results of this study can be useful to establish design parameters and employ proper removal techniques of similar natural treatment systems for future implementation in the country.

Characteristics of Nutrient Uptake by Water Plants in Free Water Surface Constructed Wetlands for Treating Non-point Source Pollution (비점오염원 처리를 위한 자유수면형 인공습지에서 수생식물의 영양염류 흡수특성 평가)

  • Kang, Se-Won;Seo, Dong-Cheol;Choi, Ik-Won;Lee, Jun-Bae;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Kim, Sang-Don;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.304-309
    • /
    • 2011
  • BACKGROUND: Generally, water plants may play an important role in nutrients(N, P) removal in constructed wetlands(CWs). Previous studies considered nutrients uptake by water plants in various CWs for treating point source pollution. On the other hand, few studies considered nutrients uptake by water plants in free water surface(FWS) CWs for treating non-point source pollution. METHODS AND RESULTS: To investigate characteristics of nutrient uptake by water plants in FWS CWs, dry weights, nutrients content and nutrients uptake by water plants were investigated from April, 2008 to October, 2008. Dominance plants were Phragmites japonica STEUD (PHRJA), Nymphaea tetragona ANGUSTA(NTMTE), Typha orientalis PRESL(TYHOR), Phragmites communis TRINIUS(PHRCO) and Zizanis latifolia TURCZ(ZIZLA) in FWS CWs. The dry weights of water plants in August were higher in the order of TYHOR(54.27 g/plant) > PHRJA(44.30 g/plant) ${\geqq}$ PHRCO(39.60 g/plant) ${\geqq}$ ZIZLA(37.80 g/plant) ${\fallingdotseq}$ NTMTE(36.75 g/plant). The T-N and T-P contents by water plants were not significantly differences regardless of cultivation period. The maximum amount of T-N uptake by water plants in August were 773 mg/plant for PHRJA, 625 mg/plant for NTMTE, 1206 mg/plant for TYHOR, 754 mg/plant for PHRCO and 768 mg/plant for ZIZLA. The maximum amounts of T-P uptake by PHRJA, NTMTE, TYHOR, PHRCO and ZIZLA were 397, 177, 411, 261 and 229 mg/plant in August, respectively. CONCLUSION(s): The results of this study suggest that optimum water plant was Typha orientalis PRESL in free water surface constructed wetlands.

Assessment of Free Water Surface Constructed Wetland Design Parameters for the Reduction of Agricultural Nonpoint Source Pollution (농업유역 비점원오염 저감을 위한 자유수면형 인공습지 설계인자 평가)

  • Jang, Jeong-Ryeol;Kwun, Soon-Kuk;Choi, Sun-Hwa
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.637-642
    • /
    • 2005
  • The objective of this study is to evaluate design parameters of free water surface constructed wetland for the reduction of agricultural nonpoint source pollution. From literature review, the key design parameters were selected as influent concentration, influent water volume, hydraulic retention time and wetland system arrangement. The design value for each parameter was established after pilot study. Full-scale constructed wetland on the basis of the designed values was constructed to evaluate those reasonableness. The results of this study showed that the designed values for free water surface constructed wetland were appropriate for the reduction of agricultural nonpoint source pollution.

  • PDF

Effects of Plant on Pollutant Removal Rate n Surface-flow Constructed Wetlands (자유수면형 인공습지에서 식물식재 유무가 처리효율에 미치는 영향)

  • Ham, Jong-Hwa;Kim, Hyung-Joong;Kim, Dong-Hwan;Hong, Dae-Byuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.85-91
    • /
    • 2011
  • Three different types of wetlands (unplanted wetland, reed planted wetland, cattail planted wetland) were constructed at the mouth of Seokmoon reservoir with 910 $m^2$ each to examine the effects of wetland plant on pollutant removal rate in constructed wetland, and operated for 9 years (2002~2010). Water depth of the wetland was maintained at 0.3~0.5 m, flow rate was about 40~200 $m^3$/day, and retention time was managed at about 1~5 days. There was no difference in removal rate of SS, TN, and TP between reed wetland and cattail wetland. Removal rate of SS and TN in planted wetland with reed and cattail were higher than unplanted wetland, whereas removal rate of TP in unplanted wetland was higher then planted wetland. The monthly variation of removal rate in planted wetlands was high compared with unplanted wetland. From the long term monitoring results, SS and TN removal rates of period3 (2008~2010) were higher than period1 (2002~2004) in planted wetland, whereas TP removal rate was decreased as time goes on. Overall, pollutant removal rate in constructed wetland was more influenced by existence of plants than by plant species. Although constructed wetland is operated long term period, SS, TN, and TP removal rate (SS 90 %, TN 60 %, TP 40 %) can be maintained high values.

A Study on Constructed Wetland Ecological Park Design with Multiple-cell FWS Layout -focus on Structural Design of Sustainable Structured wetland Biotope(SSB) Park- (자유수면형 인공습지 환경·생태공원 설계 -생태적 수질정화비오톱 공원의 구조설계를 중심으로-)

  • Byeon, Wooil
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.5
    • /
    • pp.1-9
    • /
    • 2006
  • The purpose of this study is to make a design guideline in designing constructed wetland which can treat water quality both of point and nonpoint source water pollution. It focuses on structural aspects of two case studies of constructed wetland applying SSB(Sustainable Structured wetland Biotope) system in Korea. The constructed wetland of Lake Ju-am which was constructed in 2002 by Environmental Management Corporation, was designed by applying SSB system. It shows higher removal efficiency than expected - 56% of BOD removal efficiency, 60% of T-N removal, and 76% of T-P removal efficiency. In two cases, total wetland areal extents were calculated referred to treatment efficiency. The system is consist of micro-cell structures : inflow channel, forebay, multiple wetland cells and micro-pool. When designing constructed wetland appropriate in local area, the total organic system of vertical and horizontal structure : geology, hydrology, land use, and ecological surroundings of the sites should be considered totally.