• Title/Summary/Keyword: 자원기반학습

Search Result 448, Processing Time 0.026 seconds

Neural Network based Multi-Agent Web Information Retrieval System (신경망 기반 멀티 에이전트 웹 정보 검색 시스템)

  • Choe, Yong-Seok;Yu, Seok-In
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.5
    • /
    • pp.665-673
    • /
    • 1999
  • 본 논문에서는 웹 정보검색을 위한 신경망 기반 멀티 에이전트 시스템을 제안한다. 제안된 시스템에서 각 에이전트는 신경망 메카니즘을 이용하여 사용자의 관련도 피드백으로부터 환경을 학습하고 사용자가 원하는 정보를 제공하는 자원을 찾아내어 효율적으로 웹 정보를 검색한다. 먼저 신경망 기반 웹 정보 검색 에이전트를 제시하고 단일 에이전트 기법을 사용할 경우의 문제점을 분석한다. 이를 기반으로 하여 멀티 에이전트 웹 정보 검색 시스템을 정의하고 사용자로부터 정보 검색 지식을 습득하기위한 훈련절차를 기술하며 협동적 정보 검색에 대해 설명한다. 마지막으로 제안된 시스템의 성능을 정형적으로 분석하고 실험을 통하여 기존의 검색 서비스와 비교 평가한다.

The Corpus-probability Based Generation of Korean Standard Pronunciation (코퍼스 확률에 기반한 한국어 표준발음 생성)

  • Kim, Dong-Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2007.10a
    • /
    • pp.210-215
    • /
    • 2007
  • 본 연구에서는 코퍼스 확률에 기반하여 한국어 표준 발음 생성에 대한 연구를 한다. 기존의 이은영 외 (2005)에서 연구된 규칙기반의 한국어 IPA 발음 변환방식과는 달리 본 연구에서는 음운변환 코퍼스를 바탕으로 표준발음을 변환한다. 이 방식을 위해서 Brill(1995)에서 제안한 변형기반 학습방식이 활용되었으며, 단계적인 처리방식이 아닌 입-출력 대응 방식의 확률적 처리 방식이 제안되었다. 음운변환 방식은 음운규칙에 근거한 처리가 아닌 언어자원인 코퍼스를 활용해서 처리하였다는 점에서 기존의 연구방식과 차이가 있다. 또한, 기존 연구에서는 음운규칙을 단계적으로 적용하여서 입력형이 출력형으로 도출되기 위해서 여러 단계를 거쳤지만, 본 연구에서는 입력형과 출력형의 일대일 대응이라는 점에서 차이점을 보인다.

  • PDF

Learning-by-doing Effect on Price Determination System in Korea's Emission Trading Scheme (한국 탄소배출권시장 가격결정체계의 학습효과 연구)

  • Son, Donghee;Jeon, Yongil
    • Environmental and Resource Economics Review
    • /
    • v.27 no.4
    • /
    • pp.667-694
    • /
    • 2018
  • We analyze the learning-by-doing effects of the allowance pricing system on the Korea's emission trading scheme. The price of allowance (Korean Allowance Unit) is influenced differently by internal market factors and economic conditions variables in the first (January 2015 to June 2016 ) and the second commitment year(January 2016 to June 2017). The prices and transaction volumes of complementary credits (KCU and KOC) as well as economic conditions variables (such as call rate, exchange rate, stock price) are statistically significant only for the second commitment year. Thus, the learning-by-doing effect makes the market participation decision on K-ETS market more efficient in the second commitment year, adopting the previous experience and knowledge in the K-ETS market. The factors estimated significantly in both commitment periods include the institutional binary variable for requiring the submission of the emissions verification reports issued both on February and March.

Enhancing LoRA Fine-tuning Performance Using Curriculum Learning

  • Daegeon Kim;Namgyu Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.43-54
    • /
    • 2024
  • Recently, there has been a lot of research on utilizing Language Models, and Large Language Models have achieved innovative results in various tasks. However, the practical application faces limitations due to the constrained resources and costs required to utilize Large Language Models. Consequently, there has been recent attention towards methods to effectively utilize models within given resources. Curriculum Learning, a methodology that categorizes training data according to difficulty and learns sequentially, has been attracting attention, but it has the limitation that the method of measuring difficulty is complex or not universal. Therefore, in this study, we propose a methodology based on data heterogeneity-based Curriculum Learning that measures the difficulty of data using reliable prior information and facilitates easy utilization across various tasks. To evaluate the performance of the proposed methodology, experiments were conducted using 5,000 specialized documents in the field of information communication technology and 4,917 documents in the field of healthcare. The results confirm that the proposed methodology outperforms traditional fine-tuning in terms of classification accuracy in both LoRA fine-tuning and full fine-tuning.

Semi-Supervised Learning to Predict Default Risk for P2P Lending (준지도학습 기반의 P2P 대출 부도 위험 예측에 대한 연구)

  • Kim, Hyun-jung
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.185-192
    • /
    • 2022
  • This study investigates the effect of the semi-supervised learning(SSL) method on predicting default risk of peer-to-peer(P2P) loans. Despite its proven performance, the supervised learning(SL) method requires labeled data, which may require a lot of effort and resources to collect. With the rapid growth of P2P platforms, the number of loans issued annually that have no clear final resolution is continuously increasing leading to abundance in unlabeled data. The research data of P2P loans used in this study were collected on the LendingClub platform. This is why an SSL model is needed to predict the default risk by using not only information from labeled loans(fully paid or defaulted) but also information from unlabeled loans. The results showed that in terms of default risk prediction and despite the use of a small number of labeled data, the SSL method achieved a much better default risk prediction performance than the SL method trained using a much larger set of labeled data.

Performance Evaluation Using Neural Network Learning of Indoor Autonomous Vehicle Based on LiDAR (라이다 기반 실내 자율주행 차량에서 신경망 학습을 사용한 성능평가 )

  • Yonghun Kwon;Inbum Jung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.3
    • /
    • pp.93-102
    • /
    • 2023
  • Data processing through the cloud causes many problems, such as latency and increased communication costs in the communication process. Therefore, many researchers study edge computing in the IoT, and autonomous driving is a representative application. In indoor self-driving, unlike outdoor, GPS and traffic information cannot be used, so the surrounding environment must be recognized using sensors. An efficient autonomous driving system is required because it is a mobile environment with resource constraints. This paper proposes a machine-learning method using neural networks for autonomous driving in an indoor environment. The neural network model predicts the most appropriate driving command for the current location based on the distance data measured by the LiDAR sensor. We designed six learning models to evaluate according to the number of input data of the proposed neural networks. In addition, we made an autonomous vehicle based on Raspberry Pi for driving and learning and an indoor driving track produced for collecting data and evaluation. Finally, we compared six neural network models in terms of accuracy, response time, and battery consumption, and the effect of the number of input data on performance was confirmed.

Improvement of multi layer perceptron performance using combination of gradient descent and harmony search for prediction of groundwater level (지하수위 예측을 위한 경사하강법과 화음탐색법의 결합을 이용한 다층퍼셉트론 성능향상)

  • Lee, Won Jin;Lee, Eui Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.186-186
    • /
    • 2022
  • 강수 및 침투 등으로 발생하는 지하수위의 변동을 예측하는 것은 지하수 자원의 활용 및 관리에 필수적이다. 지하수위의 변동은 지하수 자원의 활용 및 관리뿐만이 아닌 홍수 발생과 지반의 응력상태 등에 직접적인 영향을 미치기 때문에 정확한 예측이 필요하다. 본 연구는 인공신경망 중 다층퍼셉트론(Multi Layer Perceptron, MLP)을 이용한 지하수위 예측성능 향상을 위해 MLP의 구조 중 Optimizer를 개량하였다. MLP는 입력자료와 출력자료간 최적의 상관관계(가중치 및 편향)를 찾는 Optimizer와 출력되는 값을 결정하는 활성화 함수의 연산을 반복하여 학습한다. 특히 Optimizer는 신경망의 출력값과 관측값의 오차가 최소가 되는 상관관계를 찾는 연산자로써 MLP의 학습 및 예측성능에 직접적인 영향을 미친다. 기존의 Optimizer는 경사하강법(Gradient Descent, GD)을 기반으로 하는 Optimizer를 사용했다. 하지만 기존의 Optimizer는 미분을 이용하여 상관관계를 찾기 때문에 지역탐색 위주로 진행되며 기존에 생성된 상관관계를 저장하는 구조가 없어 지역 최적해로 수렴할 가능성이 있다는 단점이 있다. 본 연구에서는 기존 Optimizer의 단점을 개선하기 위해 지역탐색과 전역탐색을 동시에 고려할 수 있으며 기존의 해를 저장하는 구조가 있는 메타휴리스틱 최적화 알고리즘을 이용하였다. 메타휴리스틱 최적화 알고리즘 중 구조가 간단한 화음탐색법(Harmony Search, HS)과 GD의 결합모형(HS-GD)을 MLP의 Optimizer로 사용하여 기존 Optimizer의 단점을 개선하였다. HS-GD를 이용한 MLP의 성능검토를 위해 이천시 지하수위 예측을 실시하였으며 예측 결과를 기존의 Optimizer를 이용한 MLP 및 HS를 이용한 MLP의 예측결과와 비교하였다.

  • PDF

Controllable data augmentation framework based on multiple large-scale language models (복수 대규모 언어 모델에 기반한 제어 가능형 데이터 증강 프레임워크)

  • Hyeonseok Kang;Hyuk Namgoong;Jeesu Jung;Sangkeun Jung
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.3-8
    • /
    • 2023
  • 데이터 증강은 인공지능 모델의 학습에서 필요한 데이터의 양이 적거나 편향되어 있는 경우, 이를 보완하여 모델의 성능을 높이는 데 도움이 된다. 이미지와는 달리 자연어의 데이터 증강은 문맥이나 문법적 구조와 같은 특징을 고려해야 하기 때문에, 데이터 증강에 많은 인적자원이 소비된다. 본 연구에서는 복수의 대규모 언어 모델을 사용하여 입력 문장과 제어 조건으로 프롬프트를 구성하는 데 최소한의 인적 자원을 활용한 의미적으로 유사한 문장을 생성하는 방법을 제안한다. 또한, 대규모 언어 모델을 단독으로 사용하는 것만이 아닌 병렬 및 순차적 구조로 구성하여 데이터 증강의 효과를 높이는 방법을 제안한다. 대규모 언어 모델로 생성된 데이터의 유효성을 검증하기 위해 동일한 개수의 원본 훈련 데이터와 증강된 데이터를 한국어 모델인 KcBERT로 다중 클래스 분류를 수행하였을 때의 성능을 비교하였다. 다중 대규모 언어 모델을 사용하여 데이터 증강을 수행하였을 때, 모델의 구조와 관계없이 증강된 데이터는 원본 데이터만을 사용하였을 때보다 높거나 그에 준하는 정확도를 보였다. 병렬 구조의 다중 대규모 언어 모델을 사용하여 400개의 원본 데이터를 증강하였을 때에는, 원본 데이터의 최고 성능인 0.997과 0.017의 성능 차이를 보이며 거의 유사한 학습 효과를 낼 수 있음을 보였다.

  • PDF

The Development and Using Method of Cyber Learning Using Conceptual Models of Knowledge Creation (지식창출 개념적 모델을 이용한 가상학습 시스템의 개발 및 활용 방안)

  • Kim, Jeong-Rang;Ki, Yong-Ju
    • Journal of The Korean Association of Information Education
    • /
    • v.6 no.1
    • /
    • pp.98-109
    • /
    • 2002
  • In this knowledge-based society, a man of ability should be able to be possessed of abilities to create new knowledge while selecting, acquiring and processing knowledge and information in line with his own purpose and communicating it to other people and sharing it with them. With the aid of the emergence of web, cyber learning in the form of web-based instruction is brought to the fore. Yet, the established way of cyber learning is based on the system where learners should proceed with this study on his own instead of relying on the interaction between teachers and learners. The established way of cyber learning leaves something to be desired in terms of the application of the way to class, being almost bereft of a system capable of recreating knowledge as the result of study. Accordingly, this study is designed to develop a cyber learning system using models with the concepts of knowledge construction. The system enabled students to cultivate abilities to analyze materials and to improve creativity, producing the following system; applying it to the teaching-learning process of social studies: the system capable of being applied to a series of process from the stage of grasping problems to the stage of learning completion; the system enabling teachers and students as well to produce study results; the system enabling students to recreate knowledge in the form of homepages from constructed learning resources instead of producing fragmental knowledge.

  • PDF

Development of Prediction Model for XRD Mineral Composition Using Machine Learning (기계학습을 활용한 XRD 광물 조성 예측 모델 개발)

  • Park Sun Young;Lee Kyungbook;Choi Jiyoung;Park Ju Young
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.37 no.2
    • /
    • pp.23-34
    • /
    • 2024
  • It is essential to know the mineral composition of core samples to assess the possibility of gas hydrate (GH) in sediments. During the exploration of gas hydrates (GH), mineral composition values were obtained from each core sample collected in the Ulleung Basin using X-ray diffraction (XRD). Based on this data, machine learning was performed with 3100 input values representing XRD peak intensities and 12 output values representing mineral compositions. The 488 data points were divided into 307 training samples, 132 validation samples, and 49 test samples. The random forest (RF) algorithm was utilized to obtain results. The machine learning results, compared with expert-predicted mineral compositions, revealed a Mean Absolute Error (MAE) of 1.35%. To enhance the performance of the developed model, principal component analysis (PCA) was employed to extract the key features of XRD peaks, reducing the dimensionality of input data. Subsequent machine learning with the refined data resulted in a decreased MAE, reaching a maximum of 1.23%. Additionally, the efficiency of the learning process improved over time, as confirmed from a temporal perspective.