Kim, Jae-Kyun;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Hyuk-Ro;Kim, Jae-Hoon
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.179-183
/
2020
말뭉치는 기계학습 및 심층학습을 위한 필수 자원이다. 한국어 개체명의 경우 학습에 사용할 잘 정제된 개체명 부착 말뭉치가 충분하지 않다. 말뭉치 정제 작업은 시간적, 경제적으로 많은 비용이 소모된다. 따라서 본 논문에서는 적은 양의 말뭉치를 이용하여 말뭉치를 자동적으로 확장하는 방법을 제안한다. 특별히 소규모 말뭉치에 속하는 문장의 단어에 대한 형제어들을 선정하여 형제어의 확률추출을 기반으로 대체함으로써 새로운 문장을 생성함으로써 말뭉치 확장하는 방법이다. 본 논문에서는 확장된 말뭉치를 이용해서 대부분의 시스템에서 성능이 향상됨을 확인할 수 있었다. 앞으로 단어의 삭제 및 삽입 등 다양한 방법으로 좀 더 다양한 문장을 생성할 수 있을 것으로 생각합니다.
Nitrogen is the most essential macronutrient for the growth of fruit trees and is important factor determining the fruit yield. In order to produce high-quality fruits, it is necessary to supply the appropriate nitrogen fertilizer at the right time. For this, it is a prerequisite to accurately diagnose the nitrogen status of fruit trees. The fastest and most accurate way to determine the nitrogen deficiency of fruit trees is to measure the nitrogen concentration in leaves. However, it is not easy for citrus growers to measure nitrogen concentration through leaf analysis. In this study, several machine learning models were developed to classify the nitrogen deficiency based on the concentration measurement of mineral nutrients in the leaves of tangor Shiranuhi (Citrus unshiu × C. sinensis). The data analyzed from the leaves were increased to about 1,000 training dataset through the bootstrapping method and used to train the models. As a result of testing each model, gradient boosting model showed the best classification performance with an accuracy of 0.971.
Machine learning (ML)-based cavity detection using a large amount of survey data obtained from vehicle-mounted ground penetrating radar (GPR) has been actively studied to identify underground cavities. However, only simple image processing techniques have been used for preprocessing the ML input, and many conventional seismic and GPR data processing techniques, which have been used for decades, have not been fully exploited. In this study, based on the idea that a cavity can be identified using diffraction, we applied ML-based diffraction separation to GPR data to increase the accuracy of cavity detection using the YOLO v5 model. The original ML-based seismic diffraction separation technique was modified, and the separated diffraction image was used as the input to train the cavity detection model. The performance of the proposed method was verified using public GPR data released by the Seoul Metropolitan Government. Underground cavities and objects were more accurately detected using separated diffraction images. In the future, the proposed method can be useful in various fields in which GPR surveys are used.
The supervised learning-based deep-learning seismic inversion techniques have demonstrated successful performance in synthetic data examples targeting small-scale areas. The supervised learning-based deep-learning seismic inversion uses time-domain wavefields as input and subsurface velocity models as output. Because the time-domain wavefields contain various types of wave information, the data size is considerably large. Therefore, research applying supervised learning-based deep-learning seismic inversion trained with a significant amount of field-scale data has not yet been conducted. In this study, we predict subsurface velocity models using Laplace-domain wavefields as input instead of time-domain wavefields to apply a supervised learning-based deep-learning seismic inversion technique to field-scale data. Using Laplace-domain wavefields instead of time-domain wavefields significantly reduces the size of the input data, thereby accelerating the neural network training, although the resolution of the results is reduced. Additionally, a large grid interval can be used to efficiently predict the velocity model of the field data size, and the results obtained can be used as the initial model for subsequent inversions. The neural network is trained using only synthetic data by generating a massive synthetic velocity model and Laplace-domain wavefields of the same size as the field-scale data. In addition, we adopt a towed-streamer acquisition geometry to simulate a marine seismic survey. Testing the trained network on numerical examples using the test data and a benchmark model yielded appropriate background velocity models.
Proceedings of the Korea Society for Industrial Systems Conference
/
2003.11a
/
pp.517-524
/
2003
현재 전 세계 각국은 지식 경쟁력 확보에 혈안이 되어 있으며, 우리나라는 풍부한 인터넷 인프라를 구비하여 지식 강국으로 발돋움하기 위한 충분한 토대를 마련하고 있다. 특히, 인력은 인터넷 시대의 핵심적 지식 자원으로서, 전문가 두뇌 연계 망(네트워크)의 구축과 운영을 통해 해당 분야 전문가간 협력 및 교류가 진행되면, 지식 정보의 동시 생성, 공유, 활용 체제의 확립이 가능하다 전문가 커뮤니티의 구성원은 정보의 공유와 확산에 자발적으로 기여하는 지식의 선 순환 구조를 이루게 될 것이다. 본 논문에서는 국내외 과학기술 전문가로 구성된 한민족과학기술자 네트워크(KOSEN, www.kosen21.org)를 사례로 전문가 네트워크의 역할과 특징을 살펴보고, 지식 기반 사회에서 전문가 네트워크의 발전 방향을 제안하고자 한다. KOSEN은 지식의 생성, 공유, 활용 등의 지식관리 프로세스를 지원하는 과학기술 전문가 커뮤니티이다. 향후 인적 자원 및 정보 자원의 적절한 연계를 통해 지식의 활용 측면을 더욱 확대하여 본격적인 지식 정보 활용의 장으로 거듭나야 한다. 컨텐트 가치증대를 통한 전문가 참여 확대, 전문가들간 상호 연계의 확대를 통한 소 공동체 형성, 전문가들간 상호 학습, 정보 거래 메커니즘 구축 등의 다양한 방안을 통해 보완될 것으로 기대한다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.287-291
/
2020
본 연구에서는 한국어 의미 표상 자원 구축과 의미 파싱 성능 향상을 위한 데이터 자동 증강 방법을 제안하고 수동 구축 결과 대비 자동 변환 정확도를 보인다. 지도 학습 기반의 AMR 파싱 모델이 유의미한 성능에 도달하려면 대량의 주석 데이터가 반드시 필요하다. 본 연구에서는 기성 언어 분석 기술 또는 기존에 구축된 말뭉치의 주석 정보를 바탕으로 Semi-AMR 데이터를 변환해내는 알고리즘을 제시하며, 자동 변환 결과는 Gold-standard 데이터에 대해 Smatch F1 0.46의 일치도를 보였다. 일정 수준 이상의 정확도를 보이는 자동 증강 데이터는 주석 프로젝트에 소요되는 비용을 경감시키는 데에 활용될 수 있다.
Journal of the Korea Academia-Industrial cooperation Society
/
v.12
no.12
/
pp.5594-5600
/
2011
Even though many studies have showed that competence is positively related to organizational performance, few studies have attempted to find out the process of competency - performance. This study focuses on the organizational factors to explore their effect on the competence of customer relationship. Based on the data collected by KRIVET and the Ministry of employment and labor, strategic role of HR department and information systems are examined. As well human resource competency is investigated as a mediating variable. This study used surveys targeting department managers and executive members in firms and sample size was 1086 after cleaning the dataset by deleting all the cases with many missing values. The findings show that strategic role of HR department and information system has an influence on human resource competency, significantly. In addition, the human resource competency affect customer relationship competency, positively. Implications and directions for future research are discussed.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.23
no.4
/
pp.47-52
/
2023
With the growing data size and the increased computing load in machine learning, energy-efficient resource planning in IoT systems is becoming increasingly important. In this paper, we suggest a new resource planning policy for real-time workloads that can be fluctuated over time in IoT systems. To handle such situations, we categorize real-time tasks into fixed tasks and variable tasks, and optimize the resource planning for various workload conditions. Based on this, we initiate the IoT system with the configuration for the fixed tasks, and when variable tasks are activated, we update the resource planning promptly for the situation. Simulation experiments show that the proposed policy saves the processor and memory energy significantly.
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.4
/
pp.721-732
/
2024
Species identification of zooplankton is the most basic process in understanding the marine ecosystem and studying global warming. In this study, we propose an convolutional neural network model that can classify females and males of three zooplankton at the species level. First, training data including morphological features is constructed based on microscopic images acquired by researchers. In constructing training data, a data argumentation method that preserves morphological feature information of the target species is applied. Next, we propose a convolutional neural network model in which features can be learned from the constructed learning data. The proposed model minimized the information loss of training image in consideration of high resolution and minimized the number of learning parameters by using the global average polling layer instead of the fully connected layer. In addition, in order to present the generality of the proposed model, the performance was presented based on newly acquired data. Finally, through the visualization of the features extracted from the model, the key features of the classification model were presented.
Kim, Sangdae;Kim, Cheonyong;Cho, Hyunchong;Jung, Kwansoo;Oh, Seungmin
KIPS Transactions on Computer and Communication Systems
/
v.9
no.11
/
pp.256-264
/
2020
Industrial Wireless Sensor Networks (IWSNs) is exploited to achieve various objectives such as improving productivity and reducing cost in the diversity of industrial application, and it has requirements such as low-delay and high reliability packet transmission. To accomplish the requirement, the network manager performs graph construction and resource allocation about network topology, and determines the transmission cycle and path of each node in advance. However, this network management scheme cannot treat mobile devices that cause continuous topology changes because graph reconstruction and resource reallocation should be performed as network topology changes. That is, despite the growing need of mobile devices in many industries, existing scheme cannot adequately respond to path failure caused by movement of mobile device and packet loss in the process of path recovery. To solve this problem, a network management scheme is required to prevent packet loss caused by mobile devices. Thus, we analyse the location and movement cycle of mobile devices over time using machine learning for predicting the mobility pattern. In the proposed scheme, the network manager could prevent the problems caused by mobile devices through performing graph construction and resource allocation for the predicted network topology based on the movement pattern. Performance evaluation results show a prediction rate of about 86% compared with actual movement pattern, and a higher packet delivery ratio and a lower resource share compared to existing scheme.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.