• Title/Summary/Keyword: 자원기반학습

Search Result 448, Processing Time 0.026 seconds

Research on Developing Instructional Design Models for Enhancing Smart Learning (스마트 러닝 교수학습 설계모형 탐구)

  • Lim, Keol
    • The Journal of Korean Association of Computer Education
    • /
    • v.14 no.2
    • /
    • pp.33-45
    • /
    • 2011
  • According to recent needs for 'smart learning', the concept of smart learning was reviewed by device, environmental, and theoretical approaches. The principle of smart learning includes three elements: First, rich instructional resources as learning contents. Second, participatory learning environments with interactions among teachers and learners as learning methods. Third, practical and realistic contexts as learning environments. Based on those characteristics, instructional designs for smart learning can be summed up as learning objectives, learning resources, instructional environments, instruction process design, instruction method development, implementation, and evaluation. As a conclusion, it is required to systematically develop instructional designs addressing specific learning settings to facilitate smart learning.

  • PDF

Auto Labelling System using Object Segmentation Technology (객체 분할 기법을 활용한 자동 라벨링 구축)

  • Moon, Jun-hwi;Park, Seong-hyeon;Choi, Jiyoung;Shin, Wonsun;Jung, Heokyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.222-224
    • /
    • 2022
  • Deep learning-based computer vision applications in the field of object segmentation take a transfer learning method using hyperparameters and models pretrained and distributed by STOA techniques to improve performance. Custom datasets used in this process require a lot of resources, such as time and labeling, in labeling tasks to generate Ground Truth information. In this paper, we present an automatic labeling construction method using object segmentation techniques so that resources such as time and labeling can be used less to build custom datasets used in deep learning neural networks.

  • PDF

Understand the Current Status of Teaching and Learning Informatization and Develop Indicators in the 4th Industrial Revolution (4차산업혁명 시대를 대비한 대학의 교수학습 정보화 현황 파악 및 지표 개발)

  • Kim, Sang-Woo;Lee, Myung-Suk
    • Journal of Digital Convergence
    • /
    • v.18 no.4
    • /
    • pp.67-74
    • /
    • 2020
  • The purpose of this study has developed a teaching and learning informatization indicator that provides the basis for utilizing or disseminating the beneficial teaching and learning informatization environment promoted by each university. The research method analyzes various informatization indicators developed by KERIS from 2002 to 2015 and recent environment such as Edutech, future education report, teaching and learning field report, and reflects them in indicator development. The development of the third indicator was completed by dividing it into Input, Process, Output stages by reflecting expert opinions in the first and second indicators. As a result, the core words of the university's teaching-learning informatization infrastructure building, sharing of educational resources, open development and sharing, joint purchase of resources, information safety system and literacy education, current status grasping, and resource utilization were derived. In the future, I will fill out the questionnaire to supplement the question through a pilot test and to grasp the current status of teaching and learning informatization in the entire university.

Reinforcement Learning Approach for Resource Allocation in Cloud Computing (클라우드 컴퓨팅 환경에서 강화학습기반 자원할당 기법)

  • Choi, Yeongho;Lim, Yujin;Park, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.653-658
    • /
    • 2015
  • Cloud service is one of major challenges in IT industries. In cloud environment, service providers predict dynamic user demands and provision resources to guarantee the QoS to cloud users. The conventional prediction models guarantee the QoS to cloud user, but don't guarantee profit of service providers. In this paper, we propose a new resource allocation mechanism using Q-learning algorithm to provide the QoS to cloud user and guarantee profit of service providers. To evaluate the performance of our mechanism, we compare the total expense and the VM provisioning delay with the conventional techniques with real data.

A comparative study of conceptual model and machine learning model for rainfall-runoff simulation (강우-유출 모의를 위한 개념적 모형과 기계학습 모형의 성능 비교)

  • Lee, Seung Cheol;Kim, Daeha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.9
    • /
    • pp.563-574
    • /
    • 2023
  • Recently, climate change has affected functional responses of river basins to meteorological variables, emphasizing the importance of rainfall-runoff simulation research. Simultaneously, the growing interest in machine learning has led to its increased application in hydrological studies. However, it is not yet clear whether machine learning models are more advantageous than the conventional conceptual models. In this study, we compared the performance of the conventional GR6J model with the machine learning-based Random Forest model across 38 basins in Korea using both gauged and ungauged basin prediction methods. For gauged basin predictions, each model was calibrated or trained using observed daily runoff data, and their performance was evaluted over a separate validation period. Subsequently, ungauged basin simulations were evaluated using proximity-based parameter regionalization with Leave-One-Out Cross-Validation (LOOCV). In gauged basins, the Random Forest consistently outperformed the GR6J, exhibiting superiority across basins regardless of whether they had strong or weak rainfall-runoff correlations. This suggest that the inherent data-driven training structures of machine learning models, in contrast to the conceptual models, offer distinct advantages in data-rich scenarios. However, the advantages of the machine-learning algorithm were not replicated in ungauged basin predictions, resulting in a lower performance than that of the GR6J. In conclusion, this study suggests that while the Random Forest model showed enhanced performance in trained locations, the existing GR6J model may be a better choice for prediction in ungagued basins.

Dynamic Resource Allocation in Distributed Cloud Computing (분산 클라우드 컴퓨팅을 위한 동적 자원 할당 기법)

  • Ahn, TaeHyoung;Kim, Yena;Lee, SuKyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.7
    • /
    • pp.512-518
    • /
    • 2013
  • A resource allocation algorithm has a high impact on user satisfaction as well as the ability to accommodate and process services in a distributed cloud computing. In other words, service rejections, which occur when datacenters have no enough resources, degrade the user satisfaction level. Therefore, in this paper, we propose a resource allocation algorithm considering the cloud domain's remaining resources to minimize the number of service rejections. The resource allocation rate based on Q-Learning increases when the remaining resources are sufficient to allocate the maximum allocation rate otherwise and avoids the service rejection. To demonstrate, We compare the proposed algorithm with two previous works and show that the proposed algorithm has the smaller number of the service rejections.

A Weight Boosting Method of Sentiment Features for Korean Document Sentiment Classification (한국어 문서 감정분류를 위한 감정 자질 가중치 강화 기법)

  • Hwang, Jaewon;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2008.10a
    • /
    • pp.201-206
    • /
    • 2008
  • 본 논문은 한국어 문서 감정분류에 기반이 되는 감정 자질의 가중치 강화를 통해 감정분류의 성능 향상을 얻을 수 있는 기법을 제안한다. 먼저, 어휘 자원인 감정 자질을 확보하고, 확장된 감정 자질이 감정 분류에 얼마나 기여하는지를 평가한다. 그리고 학습 데이터를 이용하여 얻을 수 있는 감정 자질의 카이 제곱 통계량(${\chi}^2$ statics)값을 이용하여 각 문장의 감정 강도를 구한다. 이렇게 구한 문장의 감정 강도의 값을 TF-IDF 가중치 기법에 접목하여 감정 자질의 가중치를 강화시킨다. 마지막으로 긍정 문서에서는 긍정 감정 자질만 강화하고 부정 문서에서는 부정 감정 자질만 강화하여 학습하였다. 본 논문에서는 문서 분류에 뛰어난 성능을 보여주는 지지 벡터 기계(Support Vector Machine)를 사용하여 제안한 방법의 성능을 평가한다. 평가 결과, 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우 보다 약 2.0%의 성능 향상을 보였다.

  • PDF

An Attribute Weighting Approach for Naive Bayesian based on Very Fast Decision Tree (Very Fast Decision Tree 기반 Naive Bayesian 알고리즘의 Weight 부여 기법)

  • Kim, Se-Jun;Yoo, Seung-Eon;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.139-140
    • /
    • 2018
  • 본 논문에서는 지도 기계 학습 알고리즘 중 하나인 Naive Bayesian (NB) 알고리즘의 데이터 분류 정확도를 향상시키기 위하여 데이터 속성에 Weight를 부여하는 새로운 기법을 제안하였다. 기존에 Decision Tree(DT) 알고리즘의 깊이를 이용하여 Weigth를 부여하는 방법이 제안되었으나, DT를 구축하는데 오버헤드가 크기 때문에 데이터의 실시간 분석이나 자원 제한적인 환경에서의 적용은 어렵다는 단점이 있다. 이를 해결하기 위하여 본 논문에서는 최소한의 데이터를 사용하여 신속하게 DT를 구축하는 Very Fast Decision Tree (VFDT) 알고리즘 기반의 Weight 부여 기법을 제안함으로써 적은 오버헤드로 NB의 정확도를 향상시킨다.

  • PDF

5G Network Resource Allocation and Traffic Prediction based on DDPG and Federated Learning (DDPG 및 연합학습 기반 5G 네트워크 자원 할당과 트래픽 예측)

  • Seok-Woo Park;Oh-Sung Lee;In-Ho Ra
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.33-48
    • /
    • 2024
  • With the advent of 5G, characterized by Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communications (URLLC), and Massive Machine Type Communications (mMTC), efficient network management and service provision are becoming increasingly critical. This paper proposes a novel approach to address key challenges of 5G networks, namely ultra-high speed, ultra-low latency, and ultra-reliability, while dynamically optimizing network slicing and resource allocation using machine learning (ML) and deep learning (DL) techniques. The proposed methodology utilizes prediction models for network traffic and resource allocation, and employs Federated Learning (FL) techniques to simultaneously optimize network bandwidth, latency, and enhance privacy and security. Specifically, this paper extensively covers the implementation methods of various algorithms and models such as Random Forest and LSTM, thereby presenting methodologies for the automation and intelligence of 5G network operations. Finally, the performance enhancement effects achievable by applying ML and DL to 5G networks are validated through performance evaluation and analysis, and solutions for network slicing and resource management optimization are proposed for various industrial applications.

Comparison of Seismic Data Interpolation Performance using U-Net and cWGAN (U-Net과 cWGAN을 이용한 탄성파 탐사 자료 보간 성능 평가)

  • Yu, Jiyun;Yoon, Daeung
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.140-161
    • /
    • 2022
  • Seismic data with missing traces are often obtained regularly or irregularly due to environmental and economic constraints in their acquisition. Accordingly, seismic data interpolation is an essential step in seismic data processing. Recently, research activity on machine learning-based seismic data interpolation has been flourishing. In particular, convolutional neural network (CNN) and generative adversarial network (GAN), which are widely used algorithms for super-resolution problem solving in the image processing field, are also used for seismic data interpolation. In this study, CNN-based algorithm, U-Net and GAN-based algorithm, and conditional Wasserstein GAN (cWGAN) were used as seismic data interpolation methods. The results and performances of the methods were evaluated thoroughly to find an optimal interpolation method, which reconstructs with high accuracy missing seismic data. The work process for model training and performance evaluation was divided into two cases (i.e., Cases I and II). In Case I, we trained the model using only the regularly sampled data with 50% missing traces. We evaluated the model performance by applying the trained model to a total of six different test datasets, which consisted of a combination of regular, irregular, and sampling ratios. In Case II, six different models were generated using the training datasets sampled in the same way as the six test datasets. The models were applied to the same test datasets used in Case I to compare the results. We found that cWGAN showed better prediction performance than U-Net with higher PSNR and SSIM. However, cWGAN generated additional noise to the prediction results; thus, an ensemble technique was performed to remove the noise and improve the accuracy. The cWGAN ensemble model removed successfully the noise and showed improved PSNR and SSIM compared with existing individual models.