• Title/Summary/Keyword: 자연형태양열

Search Result 58, Processing Time 0.026 seconds

Design Checklist for Self-sufficient Zero Energy Solar House(ZeSH) (에너지자립형 태양열 주택의 설계 및 시공 방법 체크리스트 수립 연구)

  • Yoon Jongho;Baek Namchoon;Yu Changkyun;Kim Jongil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.416-421
    • /
    • 2005
  • Most of solar system dissemination has been focused on domestic hot water system of which utilization to a building is relatively simple and safe than solar heating system. Through the survey on a cause of solar house dissemination failure in Korea, we conclude that design integration and systematic approach method for technology application are the most important element for a successful solar house. KIER(Korea Institute of Energy Research) and Hanbat National University have started new project on a development of Zero energy Solar House, called ZeSH which can be sustained just by natural energy without the support of existing fossil fuel. This is the 1st phase research of 10 years long-term ZeSH plan which develops a low-cost and $100\%$ self sufficient ZeSH. The goal of 1st phase ZeSH research is to get a $70\%$ self sufficiency only in thermal loads. Actual demonstration house, named KIER ZeSH I was designed and constructed as a result of 1st phase research work in the end of 2002. Various innovative technologies such as super insulation, high performance window, passive and active solar systems, ventilation heat recovery system are applied and evaluated to the KIER ZeSH I. A lot of computer simulations had been conducted for the optimal design and system integration in every design steps. Considering all the results from detailed hourly computer simulation, it is expected that at least $70\%$ self-sufficiency in thermal loads which is 1st phase target value can be excessively achieved in actual demonstration house. Besides, many valuable findings from the design and analysis to construction could be established such as collaboration method among the participants, practical design and construction techniques for system integration and the others. The purpose of this paper is to introduce the main findings through the development of KIER ZeSH I project. Practical guidelines in every design step for new low- or zero- energy solar house is proposed as result.

  • PDF

An Experimental Study on Thermal Performance of Thermosyphon Solar Hot Water System (자연대류형 태양열 온수급탕 시스템의 열적성능에 관한 실험적 연구)

  • Jeon, H.S.;Kang, Y.H.;Yoon, H.K.;Kwak, H.Y.
    • Solar Energy
    • /
    • v.9 no.2
    • /
    • pp.3-13
    • /
    • 1989
  • This study has been conducted to measure the performance of 5 thermosyphon solar water heaters suitable for Korean climate and to develop the most optimum system. Each system consists of two flat plate collectors of $4'{\times}8'$ (or three flat plate collectors of $3'{\times}6'$) connected in parallel and a storage tank of $300{\ell}$ capacity. Among the tested systems, the configuration that has two flat plate collectors of $4'{\times}8'$ and a horizontal tank-in-tank type storage unit with internal fins (C system) showed the highest performance.

  • PDF

Heat Transfer in a Horizontal Mantle Heat Exchanger for a Thermosyphon-driven Flat Plate Collector (자연대류형 태양열 온수기용 맨틀 축열조의 열전달 현상에 관한 연구)

  • Cho, H.J.;Seo, T.B.;Kang, Y.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.3
    • /
    • pp.43-50
    • /
    • 2001
  • A horizontal mantle heat exchanger for a thermosyphon-driven SDHW(solar domestic hot water) was numerically simulated and fluid flow and heat transfer in the annulus of the mantle heat exchanger were quantitatively investigated. The Reynolds number, the location of the inlet, and the gap of the annulus were selected as the important design variables. The effects of the design variables on the heat transfer characteristics were thoroughly studied. Based on the numerical results, a correlation for predicting the heat transfer coefficient was suggested as the conclusion of this study.

  • PDF

Optimum Design of Thermosyphon Solar Hot Water System (자연 대류형 태양열 온수기 최적 설계에 관한 연구)

  • Kang, Y.H.;Kwak, H.Y.;Lee, D.G.;Kang, M.C.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.59-66
    • /
    • 1998
  • It was compared with experimental data to verify TRNSYS Model of the thermosyphon hot water system and the various simulations were conducted to optimize the component parameters of the system. To obtain consistent simulation results the system model, which could accurately describ the thermal storage tank temperature stratification and the friction head for mass flow rate, was used. The optimization of collector parameters(collector aspect ratio, riser numbers per header unit length), thermal storage tank parameters(ratio of tank length to tank diameter, heat exchanger type), system parameters(ratio of tank volume to collector area) was simulated by TRNSYS program. The simulation results indicate that the system performance is more effected by collector aspect ratio and the ratio of tank volume to collector area than the othor parameters.

  • PDF

Experimental Study for Thermal Performance of Batch Type Passive Solar Hot Water System (BATCH형 자연형 태양열 온수급탕 시스템의 열적 성능에 관한 실험적 연구)

  • Kang, Y.H.;Cho, Y.S.;Yoon, H.K.;Auh, P.Chung-Moo
    • Solar Energy
    • /
    • v.7 no.1
    • /
    • pp.3-13
    • /
    • 1987
  • A batch type passive solar water systems, which perform the dual function of absorbing the solar energy and storing the heated water, have been designed and fabricated for the purpose of side-by-side testing at KIER. The test models included an A, B and C type batch systems which were classified according to the design of box and arrangement of tanks. The year-round performance tests show that B type batch system taken the step-wise tank arrangement indicates 55.7% yearly-average collection efficiency factor and 61% yearly-average maximum collection efficiency factor. Computer-aided-experimental results show that the sufficient hot water can be obtained in the early morning if the glazing is supplemented by a reflector/insulation cover. The thermal performance equation has been developed for the prediction of hourly variation of the water temperature in tank.

  • PDF

Performance of Natural Circulation Hot Water System with Flat-Plate Solar Collectors (평만형 태양열 집열기 를 설치한 자연 순환식 급탕시스템 의 성능 에 관한 연구)

  • 윤석범;전문헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.579-589
    • /
    • 1985
  • The storage tank of the natural-circulation-solar-hot-water system equipped with flat-plate solar collectors is located at higher elevation than the solar collectors. Therefore, the heat loss from the system due to a reversed flow during the night-time is an important factor as well as the day-time thermal performance of the system. The thermal performance of the natural-circulation-solar-hot-water system with flat-plate solar collectors during the day-time depends mainly on the heat collecting efficiency of the solar collectors, whereas its thermal performance during the night-time depends on the system configuration , such as the elevation of the water storage tank with respect to the solar collectors and the piping connections between the storage tank and the solar collectors, as well as thermo-physical properties of the circulating fluid. In the present work, a computer program has been developed to simulate a typical natural-circulation-solar-hot-water-system, and a series of simulation tests have been carried out with the computer program to examine the thermal performance of the system during the day-time as well as the hight-time. In addition , a series of experiment have been conducted under a real sun condition using a natural-circulation-solar-hot-water-system constructed and installed at the KAIST building to compare with the results obtained from computer simulations.

Development of Solar Concentrator Cooling System (태양광 시스템의 냉각장치 개발)

  • Lee, HeeJoon;Cha, Gueesoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4463-4468
    • /
    • 2014
  • To increase the efficiency of a solar module, the development of solar concentrator using a lens or reflection plate is being proceeded actively and the concentrator pursues the a concentration using a lens or an optical device of a concentration rate and designing as a solar tracking system. On the other hand, as the energy density being dissipated as a heat according to the concentration rate increases, the cares should be taken to cool the solar concentrator to prevent the lowering of efficiency of solar cell by the increasing temperature of the solar cell. This study, researched and developed an economical concentrator module system using a low priced reflection optical device. A concentrator was used as a general module to increase the generation efficiency of the solar module and heat generated was emitted by the concentration through the cooling system. To increase the efficiency of the solar concentrator, the cooling system was designed and manufactured. The features of the micro cooling system (MCS) are a natural circulation method by the capillary force, which does not require external power. By using the potential heat in the case of changing the fluid, it is available to realize high performance cooling. The 117W solar modules installed on the reflective plate and the cooling device in the cooling module and the module unit was not compared. The cooling device was installed in the module resulted in a 28% increase in power output.

An Empirical Study on the Thermal Performance and Dynamic Behavior of Wall Integrated Thermosiphon Solar Water Heater (벽체일체형 자연순환 태양열온수기의 동적거동과 열성능에 관한 실증연구)

  • Baek, Nam-Choon;Kim, Sung-Bum;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.6
    • /
    • pp.25-35
    • /
    • 2016
  • In this study, the evaluation of the dynamic behavior and thermal performance of the "Façade integrated Natural circulation Solar Water Heating System" installed in the residential house was carried out. Experimental tests were performed during the all year around in the rural houses of $166m^2$ in size. Facade integrated solar collector of $5m^2$ were installed on the south-facing. Electrical heater of 1 kW capacity as an auxiliary heater was installed at the upper part of the heat storage tank. The analyzing results are as follows. (1) Monthly average solar fraction was 51 to 87% and yearly average value is 64%. (2) Hot water supply temperature in December which has the lowest solar altitude is 37 to $76^{\circ}C$. The highest working fluid temperature of solar collector in this period was below $84^{\circ}C$. The temperature difference of working fluid between the collector inlet and outlet has been shown to be around 9 to $26^{\circ}C$. (3) Overheating which is one of the biggest problems during summer did not appear at all, but rather had hot water supply temperature is rather low as $30{\sim}47^{\circ}C$ in summer than winter, which is supplied by a small solar load. The solar collecting temperature has been shown to maintain below $55^{\circ}C$. (5) The thermal performance of Facade integrated solar collector can be increase due to the reduction of heat loss to the back of the collector wall integration of the collector is reduced. As a conclusion, Facade integrated natural circulation type Solar Water Heating System is a well-functioning without any pumps or controllers, and it was found that the disadvantages of conventional solar water heaters, hot water or hot water system can be greatly improved.

Experiment on measures of heat collection for passive solar water wall systems that provide heat storage and natural lighting control (축열과 채광조절을 겸한 자연형 태양열 수벽시스템의 집열방식별 성능실험)

  • Oh, Young-hoon;Choi, Ji-eun;Lee, Chul-sung;Yoon, Jong-ho
    • KIEAE Journal
    • /
    • v.16 no.4
    • /
    • pp.63-69
    • /
    • 2016
  • Purpose: This preliminary study investigated a potential of the water wall systems that provide heat storage and natural lighting control simultaneously. Method: In order for transparency of the water wall to be controlled, the study first proposed two measures: to adjust transparency of the water wall; to control transparency of water wall surface. The performance of two measures then was verified and compared by experiments. In addition, a trade-off between heat collect and heat storage resulting from using additive for adjusting transparency was investigated. Result: The experiment showed that the two measures are similar in performance. The investigation of trade-off relation showed the additive should have the same heat storage as the water to prevent decrease in thermal performance of the water wall. As an economical measure to control transparency of the water wall, this study suggested a measure of secondary heat transfer systems using shading device that first absorbs solar radiation and then transfers heat to the water wall. The experiment show that performance of the proposed measure is similar to controlling transparency of water wall surface. In conclusion, it is expected that the performance of the water wall can be economically maximized by using the proposed mean in terms of heating, cooling and lighting energy saving.

Thermal Performance of PV Cells Exposed to Irradiation by a Parabolic Trough Concentrator (PTC형 태양열 집열기로 조사되는 PV cell의 열적 성능)

  • Hwang, Seon Yeob;Kang, Tae Gon;Boo, Joon Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.68-68
    • /
    • 2011
  • 본 연구에서는 PV cell이 직달 일사에 노출되는 경우와 집광된 태양광에 조사되는 경우의 성능을 비교하는 한편 집광기의 형태에 따른 열적 성능을 검토하고자 하였다. PV cell은 본질적으로 반도체의 특성을 가지므로 작동온도의 상승에 따라 성능이 저하된다는 사실이 알려져 있으며, 태양조사의 강도 및 밀도 등 특성에 따라서도 성능의 변화를 예상할 수 있다. 그러나 이러한 성능변화에 관련된 인자들과 그 영향의 크기에 대한 정량적인 기술자료가 부족하므로 설치와 이용에 한계가 있는 것이 현실이다. 인공태양 장치(solar simulator)를 이용하여 0.7에서 1.2 sun 범위의 태양 조사 환경에서 결정질 실리콘계 PV cell과 집광형 PV cell의 성능을 검토하였다. 집광에 사용한 PTC는 집광면적의 폭이 500 mm이며, 집광 조사면적이 최소 10 mm인 경우 이론적 최대 집광비가 50이었다. PTC의 축방향으로는 균일한 태양조사가 있게된다는 것을 가정하여 모델의 길이는 간편한 실험을 위해 150에서 500 mm의 범위에서 제작하였다. 수평으로 놓인 PTC의 상부 초점 위치로부터 집광면이 아래 쪽에 위치할수록 집광 조사 면적이 증가하므로 PV cell의 크기에 따라 PTC 초점의 위치로부터 거리를 결정하였다. 한편, PTC 자체의 성능도 촛점거리와 집광면 폭의 비에 따라 달라질 수 있다는 가정 하에, 포물면의 최저 위치로부터 촛점거리는 각각 300, 400 및 500 mm가 되도록 세가지 형태를 제작하여 사용하였다. 동일한 형태의 PTC에서 PV cell의 동일한 설치 위치에서도 최고 $110^{\circ}C$ 범위의 PV cell의 작동 (표면) 온도에 따른 성능의 차이를 관찰하기 위해 셀의 후면을 냉각시키는 경우와 그렇지 않은 경우를 비교하였다. PV cell의 표면 온도 측정을 위해서, 후면의 온도와 같이 광선 차단 효과의 우려가 없는 경우에는 열전대를 설치하였으며, 셀의 전면 온도 측정을 위해서는 비접촉식 적외선 온도계를 사용하였다. 냉각 방법으로는 공기를 이용한 자연대류와 액체를 사용하는 강제대류의 경우를 고려하였으며, 필요에 따라 적절히 설계된 히트싱크를 설치하여 비교 실험을 진행하였다. 강제대류 냉각의 경우는 항온조를 사용하여 순환하는 냉각수의 유량과 공급온도를 변화시킴으로써 PV cell의 작동온도를 조절하고, 이에 따른 발전 성능의 변화를 관찰하였다. 본 연구에서 도출한 실험 및 분석 결과는 PV cell의 설치 환경과 작동온도의 변화에 따라 그 성능 변화를 예측할 수 있는 기술적 자료를 제공함으로써 에너지 이용의 합리화를 도모하는데 기여할 수 있을 것이다.

  • PDF