• Title/Summary/Keyword: 자연탈질

Search Result 17, Processing Time 0.025 seconds

A Study of Denitrification in the Grassland with an Acetylene Inhibition Technic (초지(草地)에서의 아세칠렌 조해법(阻害法)에 의(依)한 탈질(脫窒) 연구(硏究))

  • Jo, Jin-Ki;Choi, Jyung;Park, Woo-Churl
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.4
    • /
    • pp.353-357
    • /
    • 1983
  • A field study was conducted for 20 soil columns to investigate the denitrification in the grassland with a method introducing $C_2H_2$ in the denitrifying system. Since acetylene blocked the pathway from $N_2O$ to $N_2$, all the free products of denitrification consisted of nitrous oxide. In this study, denitrification was measured as $N_2O$. Results are as follows. 1. In most of boils examined, denitrification was observed as $N_2O$ when acetylene was introduced into the denitrification system while $N_2O$ was scarcely evolved without acetylene in the system. 2. Denitrification occurred even in the grassland soils when they were saturated with water. Denitrification was nil or negligible without water saturation. 3. Denitrification loss far 3 days incubation(from 13th to 16th day after urea application) was 4.2% in average and 14.2% in maximum. 4. Soil chemical properties such as nitrate nitrogen, nitrite nitrogen, total nitrogen, total carbon and mineralizable carbon did not show clear relationships with denitrificatien, probably since soil chemical properties were analysed for the soils after incubation.

  • PDF

A pilot study on attenuation of nitrate in a paddy rice field: preliminary results

  • 최병영;윤성택;김강주;김동승;전종욱;윤성문
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.93-96
    • /
    • 2004
  • 국내 대부분의 경작지를 차지하고 있는 논농사 지역에서의 질산성 질소의 자연저감을 고찰하기 위하여, 세 유형의 수조 환경을 조성하고 mesocosm 실험 연구를 수행하였다. 두개의 mesocosm에는 논토양을, 그리고 비교를 위하여 다른 하나에는 밭토양(황토)을 사용하였으며, 하나의 논토양 mesocosm과 밭토양(황토) mesocosm에는 벼를 재배하였다. 인위적으로 질산성 질소 성분을 용해한 지하수를 주입수로 사용하였으며, mesocosm을 통과한 물 시료를 41일 동안 12시간 또는 24시간 간격으로 채취하고 화학분석을 실시하였다. 실험 결과, 논토양에서는 실험 시작과 동시에 급격한 환원환경이 형성되었으며, 그 결과 탈질반응에 의해 질산성 질소의 농도가 현저히 저감되었다. 분석 자료의 해석 결과, 논토양 mesocosm에서는 유기물이, 밭토양 mesocosm에서는 철이온(Fe2+)이 질산성 질소의 탈질 반응에 중요한 역할을 수행하는 것으로 판단된다.

  • PDF

Influence of Elevated $CO_2$ on Denitrifying Bacterial Community in a Wetland Soil (이산화탄소 증가가 습지토양의 탈질세균 군집구조에 미치는 영향)

  • Lee Seung-Hoon;Kim Seonyoung;Kang Hojeong
    • Korean Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.244-247
    • /
    • 2004
  • To investigate the effects of elevated $CO_2$ on the denitrifying bacterial community structure in a wetland soil, dynamics of bacterial community structure was explored in an artificial wetland ecosystem with one of three plant species (T. latifolia, S. lacustris, and 1. effusus) under two levels of $CO_2$(370 ppm or 740 ppm) after 110day incubation. For the analysis of bacterial community structure, functional genes such as nitrite reductase genes (nirS) were PCR-amplified followed by cloning of PCR products and screening by restriction fragment length polymorphism (RFLP). nirS gene fragments were amplified in all analyzed soil samples. Species richness estimated by the number of distinct phylotypes were 83 and 95 in the ambient $CO_2$ treatment and the elevated treatment, respectively. Two phylotypes (type 1 and type 2) were dominant in both of the treatments. Elevated $CO_2$ treatment increased species richness of denitrifying as well as changed a large proportion of denitrifier phylotypes compared to those of the ambient treatment. Overall, the data in this study suggested that the denitrifying communities in the wetland soil are diverse and that the richness of denitrifying bacterial community might be affected by elevated $CO_2$ treatment.

Microcosm Study on BTEX and MTBE (Methyl Tert-Butyl Ether) Biodegradation under Aerobic-Anaerobic Conditions (호기/혐기성 조건에서의 BTEX 및 MTBE 동시 분해특성)

  • Oh, Inseok;Lee, Changyeol;Lee, Jongin;Kim, Jitae;Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.39-46
    • /
    • 2014
  • The objectives of this study were to determine biodegradation and characteristics of BTEX and MTBE under aerovic-anaerobic conditions and evaluate the potential of natural attenuation method in denitrifying condition.. In the single-substrate experiments, all of the BTEX compounds were degraded under all the conditions. but, lower degradation of benzene and p-xylene were observed under aerobic condition due to the lack of oxygen initially supplied. In the mixed-substrate experiments, BTEX degradation was delayed compared to that in the single-substrate experiments due to a competition of the substrates. Biodegradation of MTBE was observed only under denitrifying conditions and we expected that MTBE mineralized to $CO_2$ without the accumulation of TBA. We also conducted to determine the effect of initial nitrate concentration on BTEX and MTBE degradation. At low nitrate concentration (<50 mg/L), BTEX degradations were limited by the lack of electron acceptor and BTEX degradation was inhibited at high nitrate concentration (>200 mg/L). The results in this study indicated that biotransformation could be applied to the gasoline-contaminated region under aerovic-anaerobic.

Reduction of the Nitrogen in the Secondary Effluent by the Hybrid Sequential Aerobic-Anoxic Natural System (자연현상을 이용한 질산화-탈질공정에 의한 하수처리장 유출수의 질소제거)

  • Kim, Young-Chul;Chung, Paul-Gene;An, Ik-Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.323-329
    • /
    • 2005
  • In this paper, performance of a hybrid sequential aerobic-anaerobic natural system was investigated. Continuous aerobic and anoxic conditions were created by alternatively placing waste stabilization pond (WSP) and wale. hyacinth pond (WHP). Two pilot-scale treatment lines were built and operated; The first consists of WSP integrated with WHP and the second of WSP connected with Dark Pond(DP), namely control system ponds which were used to examine the effects of water hyacinth on nitrification and de-nitrification. The overall performance in nitrogen was 86% reduction in WSP-WHP and 36% in WSP-control pond system. Nitrogen was mostly removed by nitrification and de-nitrification which simultaneously occurred in the same water hyacinth ponds. For the de-nitrification, benthic layer was found out to be adequate support as a carbon source. In addition, WSP-WHP system was very effective in reducing phosphorus. Overall P removal efficiency in WSP-WHP is 81%, while it is only 16% in WSP-control. difference in phosphorus reduction between those two systems is thought to be caused by the plants and probably their roots producing extra-cellular materials, but these aspects need to be further studied.

Simultaneous Removal of Ammonium and Nitrate by Natural Zeolite and Bacteria (천연 zeolite와 미생물을 이용한 NH4+ 및 NO3-의 동시 제거)

  • Lee, Seon-hee;Lee, Ji-Hye;Kim, Duk gyum;Lee, Chang-Soo;Kang, Kyung Suk;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.971-976
    • /
    • 2008
  • Water pollution by ammonium ion and nitrate is a common and growing problem in the ecosystem. Process of biological removal consists of nitrification and denitrification by bacteria. Ammonium is oxidized generally to nitrate by nitrification and nitrate is reduced to dinitrogen gas in the subsequent denitrification process. Although natural zeolite is well known for its ability to preferentially remove ammonium, it is not sufficiently removing ammonium ion and nitrate by adsorption. In order to overcome this problem, a method of biological removal with zeolite is used for simultaneous removal of ammonium and nitrate. As a result, in case of shaking culture with 1% seed and passing through zeolite column, the process revealed that ammonium ion could be removed completely after 14 hours. The removal of nitrate using columns with naturally adsorbed bacteria onto zeolite reached approximately 100% after 4 hours.

Advanced Wastewater Treatment-Natural Septic Method of Rural Housing sewage Using an Aquatic Plants (수생식물을 이용한 농촌주택 하수의 고도처리 자연정화법)

  • Shin, Banwoong;Bang, Seongtaek;Shin, Minchul;Lee, Sangeul
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.2 no.1
    • /
    • pp.89-100
    • /
    • 2000
  • Recently, according to the increase of population and rapid growth of industry, the amount of effluent pollutant has been rising in natural water. In these pollutant, nutrients such as nitrogen and phosphor are told that these evolve the odor, color and eutrophication in rural housing sewage and lake regulary. Many researches have been carried out to remove these nutrients from effluents and will have to be studied more deeply. Especially, because of the sewage of rural housing and livestock, environmental pollution raises serious problem in a rural community. This method is developed to solve the problem environmentally friendly. Using the natural energy(wasteheat, earthheat, solar engery) and the growth properties of aquatic plants are most efficient method to absorb the nutrients and denitrification and phosphor uptake.

  • PDF

Nitrate Contamination of Alluvial Groundwaters in the Keum River Watershed Area: Source and Behaviors of Nitrate, and Suggestion to Secure Water Supply (금강 권역 충적층 지하수의 질산염 오염: 질산성 질소의 기원과 거동 고찰 및 안전한 용수 공급을 위한 제언)

  • 김경호;윤성택;채기탁;최병영;김순오;김강주;김형수;이철우
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.471-484
    • /
    • 2002
  • Alluviums in the Keum River watershed cover an areal extent of $3,029{\;}\textrm{km}^2$ and contain about 8.1 billion tons of groundwater. However, the waters are severely polluted by nitrate, possibly due to the application of nitrogen fertilizer (>250 N kg/ha) on agricultural land. This paper aims to elucidate the pollution status and behaviors of nitrate in alluvial groundwaters in the Keum River watershed area, based on regional hydrogeochemical study. Most of the collected samples (n = 186) are polluted by nitrate (average = 42.2 mg/L, maximum = 295 mg/L). About 29% of the samples have the nitrate concentrations exceeding Korean Drinking Water Standard (44 mg/L $NO_3$). The distribution of nitrate concentrations in the study area is largely dependant on geochemical environments of alluvial aquifers. In particular, the decrease of redox potential of alluvial groundwaters showed a good correlation with the decreases of nitrate, iron, and manganese concentrations. Thus, the change of redox state in alluvial aquifers, likely reflecting their sedimentary environments, controls both the behavior and fate of nitrogen compounds and their natural attenuation (denitrification) in aquifers. A carbon-rich, silty layer within alluvium strata forms a reducing condition and possesses a buffering capacity on nitrate pollution.

Hydro-ecological characterizations in groundwater dependent ecosystem (지하수 종속 생태환경에서 수문-생태학적 특성 조사 및 분석)

  • Kim, Hee-Jung;Hyun, Yun-Jung;Lee, Kang-Kun
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • The groundwater dependent ecosystem associated with a natural stream is the area where mixing and exchange of surface water and groundwater occurs due to large chemical and hydraulic gradients. Surface-groundwater interactions play an important role in biogeochemical processes in groundwater dependent ecosystems and make this area a hydro-ecological hot spot. The objective of this study is to characterize the groundwater dependent ecosystem in a natural stream where nitrate contamination of stream water is observed by means of hydrogeological, chemical, and biological methods. In this study, vertical flow exchange(hyporheic flow) rates between stream and groundwater were estimated based on vertical hydraulic gradients measured at mini-piezometers of various depths. To investigate the biological natural attenuation potential, biological analyses using polymerase chain reaction(PCR)-cloning methods were performed in this study. Results show that the veritical hyporheic water fluxes affect nitrate concentrations and bacterial densities in groundwater dependent ecosystems to some degree. Also, denitrifying bacteria were identified in hyporheic soils, which may support the biodegradation potential of the groundwater dependent ecosystems under certain conditions.

  • PDF