• Title/Summary/Keyword: 자연언어 생성

Search Result 160, Processing Time 0.025 seconds

The Representational Structure of Lexical Informations of Korean non-autonomous nouns in the Sejong Electronic Dictionary (세종 의존명사/대명사/수사 전자사전의 정보표상 구조)

  • Bang, Seong-Won;Ho, Jeong-Eun;Kim, Jong-In
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.341-347
    • /
    • 2001
  • 세종전자사전이 궁극적으로 범용전자사전을 지향한다는 점에 비추어 볼 때, 텍스트 자동 분석과 생성, 정보 검색 및 자동 번역 등에 활용될 데이터베이스로서의 전자사전은 자연 언어 어휘의 내적 구조와 기능방식에 관한 정보들, 가령 음운 통사 의미 화용적 가치와 실현 조건 등에 관한 정보들을 체계적이고도 정교하게 담고 있어야만 한다. 의존명사, 대명사, 수사 범주에 속하는 언어 단위들은 단일 명사와 구별되는 어휘 통사적 속성들을 지니며, 사전의 기술 구조에는 그 정보 값들을 체계적으로 명시화할 수 있는 정보 항목과 표상 구조가 설정되어야 한다. 가령 의존명사처럼 통사 의미적 자율성을 지니지 않는 언어 요소의 경우, 어휘 관계 정보보다는 인접하는 여타 언어 단위들과의 호응관계나 결합제약 조건들이 더 중요한 정보일 수 있다. 본 사전이 체언사전의 하위사전으로 별도로 구축되는 것은 단일어 사전에서 그러한 정보들을 효과적으로 표상하기 어렵기 때문이다. 그러나 본 사전은 실제적으로는 체언사전에 통합되어 운영된다는 점에서 이중적 지위를 누린다고 하겠다.

  • PDF

Evaluation of Sentimental Texts Automatically Generated by a Generative Adversarial Network (생성적 적대 네트워크로 자동 생성한 감성 텍스트의 성능 평가)

  • Park, Cheon-Young;Choi, Yong-Seok;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.6
    • /
    • pp.257-264
    • /
    • 2019
  • Recently, deep neural network based approaches have shown a good performance for various fields of natural language processing. A huge amount of training data is essential for building a deep neural network model. However, collecting a large size of training data is a costly and time-consuming job. A data augmentation is one of the solutions to this problem. The data augmentation of text data is more difficult than that of image data because texts consist of tokens with discrete values. Generative adversarial networks (GANs) are widely used for image generation. In this work, we generate sentimental texts by using one of the GANs, CS-GAN model that has a discriminator as well as a classifier. We evaluate the usefulness of generated sentimental texts according to various measurements. CS-GAN model not only can generate texts with more diversity but also can improve the performance of its classifier.

Parse Tree Selection using Adverb Information (부사 정보를 이용한 구문 구조 선택)

  • Shin, Seung-Eun;Jung, Cheon-Young;Seo, Young-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.381-387
    • /
    • 2001
  • 자연 언어 처리의 구문 구조 분석에서는 수식 관계의 중의성에 의한 많은 구문 구조가 생성된다. 이러한 중의성을 해소하는데 어휘 정보가 유용하다는 것은 잘 알려져 있다. 본 논문은 한국어의 구문 구조 분석 시 중의성을 해소하기 위해 어휘 정보로 부사 수식 정보와 부사 확률 정보를 사용한다. 부사들의 사용과 수식 패턴들을 대량의 말뭉치로부터 조사하고, 수식 패턴들 중 비교적 규칙적인 것들을 부사 수식 정보로, 피수식어의 상대적 위치와 피수식어의 품사에 대한 확률을 부사 확률 정보로 구성하였다. 구문 구조들 중 가장 옳은 구문 구조를 선택하기 위해 부사 수식 정보와 부사 확률 정보를 이용하였고, 구문 분석에서 부사에 의한 중의성을 해소하였다.

  • PDF

Study on Automatic Construction and Evaluation method of Caseframe (격틀 자동구축과 격틀평가 방법에 관한 연구)

  • Choi, Yong-Seok;Lee, Ju-Ho;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.272-279
    • /
    • 1999
  • 격틀이란 동사에 대해 필요한 격들과 그 격에 알맞은 단어집합으로 이루어져 있는 것으로 명사와 동사의 의미적 호응을 표현한다. 격틀은 자연언어처리분야에서 주요한 정보로 사용할 수 있다. 의미구분이라든지 번역에서 한국어 생성, 정보검색에서 중요정보 추출 등 잘 구성한 질 높은 격틀은 여러 연구의 질을 높여줄 수 있다. 따라서, 질 좋은 격틀을 구성하기 위한 여러 노력들이 현재 이루어지고 있다. 본 논문에서는 기계 가독형 사전과 말모듬을 이용해서 자동으로 격틀을 구성한다. 자동구성 방법으로 먼저 기계가독형 사전을 이용해서 상위개념 정보를 가지는 분류정보를 구성한다. 말모듬과 사전의 예문들을 형태소 분석한 후에 각각의 예문들을 분류정보를 이용하여 최상위 개념으로 바꾼다. 그리고, 말모듬과 사전의 예문에서 나온 정보들을 통합하므로 해서 자동으로 격틀을 구성한다. 자동으로 격틀을 구성한 후에 수동으로 구성한 격틀과 비교해 본다. 비교하기 위한 평가방법에 대해서 논의한다.

  • PDF

Automatic Extraction of Technical Terminologies from Scientific Text based on Hidden Markov Model (은닉마르코프 모델(HMM)을 이용한 과학기술문서에서의 외래어 추출 모델)

  • Oh, Jong-Hoon;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.137-141
    • /
    • 1999
  • 기술의 발달로 인해 수많은 용어들이 생성되고 있다. 이들은 대부분 전문용어이며 이는 비영어권 국가인 우리나라에 도입될 때, 외래어나 원어형태로 도입된다. 그런데 외래어나 원어형태의 전문용어는 형태소 분석기, 색인기 등의 시스템에서 오류의 원인이 되어, 이를 전처리기로 사용하는 자연언어처리 시스템의 성능을 저하 시킨다. 따라서 본 논문에서는 외래어나 원어로 된 전문용어를 처리하기 위한 전단계로서 문서에서 자동적으로 외래어를 인식하고 추출하는 방법을 제시한다. 본 논문에서 제시하는 방법은 외래어 추출 문제를 태깅문제로 변환하여, 태깅 문제를 해결하는 기법 중의 하나인 은닉마르코프 모델 (Hidden Markov Model)을 이용하여 외래어 추출을 하였다. 그 결과 94.90%의 재현률과 95.41%의 정확도를 나타내었다.

  • PDF

Methodology and Implementation of Detecting Tool for New Words Occurring in Korean Document (신조어 자동 추출 방법론과 신어 조사 도구의 개발)

  • Lee, Samuel Sangkon
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.271-276
    • /
    • 2009
  • 신조어 조사용 프로그램은 웹에 실시간으로 등록되는 언론 기사를 수집하는 웹 에이전트를 개발하여 텍스트를 추출하고, 간단한 어휘 분석을 통하여 국어사전에 등록된 표제어와 이미 연구자가 발견한 기존의 신조어를 제외하고, 현대의 사회상을 잘 표현하는 새로 생성된 신조어를 추출하는 작업을 하는 도구이다. 인터넷의 언론 사이트에서 규칙적인 URL 패턴을 발견하고 뉴스 기사를 수집한다. HTML 소스 분석을 통하여 언론 기사만을 추출하여 국어 전공자가 신어를 찾아내는 작업을 도와주는 조사 도구를 설계하고 구현하였다.

  • PDF

Design of a Contextual Lexical Knowledge Graph Extraction Algorithm (맥락적 어휘 지식 그래프 추출 알고리즘의 설계)

  • Nam, Sangha;Choi, Gyuhyeon;Hahm, Younggyun;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.147-151
    • /
    • 2016
  • 본 논문에서는 Reified 트리플 추출을 위한 한국어 개방형 정보추출 방법을 제시한다. 시맨틱웹 분야에서 지식은 흔히 RDF 트리플 형태로 표현되지만, 자연언어문장은 복수개의 서술어와 논항간의 관계로 구성되어 있다. 이러한 이유로, 시맨틱웹의 대표적인 지식표현법인 트리플을 따름과 동시에 문장의 의존구조를 반영하여 복수개의 술어와 논항간의 관계를 지식화하는 새로운 개방형 정보추출 시스템이 필요하다. 본 논문에서는 문장 구조에 대한 일관성있는 변환을 고려한 새로운 개방형 정보추출 방법을 제안하며, 개체 중심의 지식과 사건중심의 지식을 함께 표현할 수 있는 Reified 트리플 추출방법을 제안한다. 본 논문에서 제안한 방법의 우수성과 실효성을 입증하기 위해 한국어 위키피디아 알찬글 본문을 대상으로 추출된 지식의 양과 정확도 측정 실험을 수행하였고, 본 논문에서 제안한 방식을 응용한 의사 SPARQL 질의 생성 모듈에 대해 소개한다.

  • PDF

Korean Structural Disambiguation using Adverb Information (부사 정보를 이용한 한국어 구조 중의성 해소)

  • Shin, Seung-Eun;Seo, Young-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.110-115
    • /
    • 2000
  • 자연 언어 처리의 구문 분석에서는 중의성 있는 결과가 많이 생성된다. 이러한 중의성을 해소하는데 어휘정보가 유용하다는 것은 잘 알려져 있으며, 이러한 어휘정보와 이를 이용한 중의성 해소에 관한 연구가 많이 이루어지고 있다. 본 논문은 한국어의 구문 구조 분석 시 부사에 의해 발생되는 중의성을 해소하기 위해 수식어 사전을 이용하여 구문 분석에서의 구조 중의성을 해소하였다. 수식어 사전의 어휘정보와 대상 말뭉치를 통해 각각의 부사에 대한 문법을 구성하고, 이를 이용하여 한국어 구문구조 분석에서 부사에 의해 발생되는 중의성을 줄일 수 있다.

  • PDF

Speech Animation Synthesis based on a Korean Co-articulation Model (한국어 동시조음 모델에 기반한 스피치 애니메이션 생성)

  • Jang, Minjung;Jung, Sunjin;Noh, Junyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.3
    • /
    • pp.49-59
    • /
    • 2020
  • In this paper, we propose a speech animation synthesis specialized in Korean through a rule-based co-articulation model. Speech animation has been widely used in the cultural industry, such as movies, animations, and games that require natural and realistic motion. Because the technique for audio driven speech animation has been mainly developed for English, however, the animation results for domestic content are often visually very unnatural. For example, dubbing of a voice actor is played with no mouth motion at all or with an unsynchronized looping of simple mouth shapes at best. Although there are language-independent speech animation models, which are not specialized in Korean, they are yet to ensure the quality to be utilized in a domestic content production. Therefore, we propose a natural speech animation synthesis method that reflects the linguistic characteristics of Korean driven by an input audio and text. Reflecting the features that vowels mostly determine the mouth shape in Korean, a coarticulation model separating lips and the tongue has been defined to solve the previous problem of lip distortion and occasional missing of some phoneme characteristics. Our model also reflects the differences in prosodic features for improved dynamics in speech animation. Through user studies, we verify that the proposed model can synthesize natural speech animation.

Improving English-to-Korean Transliteration through Automatic Relevance Feedback (적합성 피드백을 이용한 자동 음차표기의 성능향상 기법)

  • 오종훈;최기선
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.805-807
    • /
    • 2004
  • 음차표기란 외국어의 단어를 글자나 발음을 이용하여 자국어로 표기하는 것으로 정의된다. 자동음차표기는 기계번역과 정보검색 등의 자연언어처리 응용에서 사용된다. 기계번역에서는 번역사전에 등재되어 있지 않은 고유명사나 전문용어를 번역하는 방법으로 사용되며, 정보검색에서는 단어불일치 문제의 해결과 질의확장 등에 사용된다. 하지만 지금까지의 영-한 자동 음차표기 연구들은 대부분 주어진 원어에 대하여 가장 적합한 음차표기를 생성하는 연구에 초점을 맞추었다. 또한, 원어로부터 가능한 음차표기를 파악하는 연구에서도 해당 음차표기에 대한 적합성을 파악하지 않고 단순 리스트형태로 음차표기를 생성함으로써, 음차표기생성 결과에 대한 품질이 낮았다. 본 논문에서는 이러한 문제점을 해결하기 위하여, 주어진 원어로부터 가능한 음차표기를 생성하고 이들에 대한 적합성을 자동으로 파악하는 음차표기 모델을 제안한다. 본 논문의 기법은 약 72%의 단어 정확률을 나타내었으며 기존의 기법보다 최고 31%의 성능향상을 나타내었다.

  • PDF