• Title/Summary/Keyword: 자연언어 생성

Search Result 160, Processing Time 0.025 seconds

Generative Multi-Turn Chatbot Using Generative Adversarial Network (생성적 적대적 신경망을 이용한 생성기반 멀티턴 챗봇)

  • Kim, Jintae;Kim, Harksoo;Kwon, Oh-Woog;Kim, Young-Gil
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.25-30
    • /
    • 2018
  • 기존의 검색 기반 챗봇 시스템과 다르게 생성 기반 챗봇 시스템은 사전에 정의된 응답에 의존하지 않고 채팅 말뭉치를 학습한 신경망 모델을 사용하여 응답을 생성한다. 생성 기반 챗봇 시스템이 사람과 같이 자연스러운 응답을 생성하려면 이전 문맥을 반영해야 할 필요가 있다. 기존 연구에서는 문맥을 반영하기 위해 이전 문맥과 입력 발화를 통합하여 하나의 벡터로 표현했다. 이러한 경우 이전 문맥과 입력 발화가 분리되어 있지 않아 이전 문맥이 필요하지 않는 경우 잡음으로 작용할 수 있다. 본 논문은 이러한 문제를 해결하기 위해 입력 발화와 이전 문맥을 각각의 벡터로 표현하는 방법을 제안한다. 또한 생성적 적대적 신경망을 통해 챗봇 시스템을 보강하는 방법을 제안한다. 채팅 말뭉치(55,000 개의 학습 데이터, 5,000개의 검증 데이터, 5,260 개의 평가 데이터)를 사용한 실험에서 제안한 문맥 반영 방법과 생성적 적대적 신경망을 통한 챗봇 시스템 보강 방법은 BLEU와 임베딩 기반 평가의 성능 향상에 도움을 주었다.

  • PDF

Generation of Korean Predicates for Japanese-Korean Machine Translation System and its Evaluation (일-한 기계 번역에 있어서 한국어 술부의 생성과 평가)

  • Kim, Jung-In;Moon, Kyong-Hi;Lee, Jong-Hyeok;Lee, Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 1996.10a
    • /
    • pp.329-337
    • /
    • 1996
  • 일-한 기계 번역을 연구하는 많은 연구자들은 양국어의 문절-어절 단위의 어순 일치와 같은 구조적 유사성을 최대한 이용하기 위해 직접 번역 방식을 채택하고 있다. 그러나, 일본어와 한국어 술부간에는 대응하는 품사의 불일치 및 국부적인 어순의 불일치 등이 어려운 문제로 남아 있다. 본 논문에서는 이들 술부 표현의 불일치를 해결하기 위해 이미 제안하였던 "양상 테이블을 기반으로 한 한국어 술부의 생성 방법"에 대해 좀더 체계적인 평가를 하고자 한다. 이 방법은 술부만을 대상으로 하는 추상적이고 의미 기호적인 양상 자질(modality feature)을 테이블화(양상 테이블)하여, 양국어의 술부 표현의 피봇(pivot)으로 이용함으로써 술부 양상 표현의 효과적인 번역을 가능하게 하였다. 일본어 499 문을 대상으로 실제 술부의 번역처리를 시행해 본 결과, 약 97.7%가 자연스럽게 번역됨을 확인하였다. 특히, 술부의 생성 부분은 일본어에 의존하지 않는 양상 테이블을 도입함으로써 일-한뿐만 아니라 다른 언어로부터의 한국어 술부 생성에도 적용시킬 수 있을 것이다.

  • PDF

Building a Corpus for Korean Tutoring Chatbot (한국어 튜터링 챗봇을 위한 말뭉치 구축)

  • Kim, Hansaem;Choi, Kyung-Ho;Han, Ji-Yoon;Jung, Hae-Young;Kwak, Yong-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.288-293
    • /
    • 2017
  • 교수-학습 발화는 발화 턴 간에 규칙화된 인과관계가 강하고 자연 발화에서의 출현율이 낮다. 일반적으로 어휘부, 표현 제시부, 대화부로 구성되며 커리큘럼과 화제에 따라 구축된 언어자원이 필요하다. 기존의 말뭉치는 이러한 교수-학습 발화의 특징을 반영하지 않았기 때문에 한국어 교육용 튜터링 챗봇을 개발하는데에 활용도가 떨어진다. 이에 따라 이 논문에서는 자연스러운 언어 사용 수집, 도구 기반의 수집, 주제별 수집 및 분류, 점진적 구축 절차의 원칙에 따라 교수-학습의 실제 상황을 반영하는 준구어 말뭉치를 구축한다. 교실에서 발생하는 언어학습 상황을 시나리오로 구성하여 대화 흐름을 제어하고 채팅용 메신저와 유사한 형태의 도구를 통해 말뭉치를 구축한다. 이 연구는 한국어 튜터링 챗봇을 개발하기 위해 말뭉치 구축용 챗봇과 한국어 학습자, 한국어 교수자가 시나리오를 기반으로 발화문을 생성한 준구어 말뭉치를 최초로 구축한다는 데에 의의가 있다.

  • PDF

Personalized Chit-chat Based on Language Models (언어 모델 기반 페르소나 대화 모델)

  • Jang, Yoonna;Oh, Dongsuk;Lim, Jungwoo;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.491-494
    • /
    • 2020
  • 최근 언어 모델(Language model)의 기술이 발전함에 따라, 자연어처리 분야의 많은 연구들이 좋은 성능을 내고 있다. 정해진 주제 없이 인간과 잡담을 나눌 수 있는 오픈 도메인 대화 시스템(Open-domain dialogue system) 분야에서 역시 이전보다 더 자연스러운 발화를 생성할 수 있게 되었다. 언어 모델의 발전은 응답 선택(Response selection) 분야에서도 모델이 맥락에 알맞은 답변을 선택하도록 하는 데 기여를 했다. 하지만, 대화 모델이 답변을 생성할 때 일관성 없는 답변을 만들거나, 구체적이지 않고 일반적인 답변만을 하는 문제가 대두되었다. 이를 해결하기 위하여 화자의 개인화된 정보에 기반한 대화인 페르소나(Persona) 대화 데이터 및 태스크가 연구되고 있다. 페르소나 대화 태스크에서는 화자마다 주어진 페르소나가 있고, 대화를 할 때 주어진 페르소나와 일관성이 있는 답변을 선택하거나 생성해야 한다. 이에 우리는 대용량의 코퍼스(Corpus)에 사전 학습(Pre-trained) 된 언어 모델을 활용하여 더 적절한 답변을 선택하는 페르소나 대화 시스템에 대하여 논의한다. 언어 모델 중 자기 회귀(Auto-regressive) 방식으로 모델링을 하는 GPT-2, DialoGPT와 오토인코더(Auto-encoder)를 이용한 BERT, 두 모델이 결합되어 있는 구조인 BART가 실험에 활용되었다. 이와 같이 본 논문에서는 여러 종류의 언어 모델을 페르소나 대화 태스크에 대해 비교 실험을 진행했고, 그 결과 Hits@1 점수에서 BERT가 가장 우수한 성능을 보이는 것을 확인할 수 있었다.

  • PDF

A study on Implementation of English Sentence Generator using Lexical Functions (언어함수를 이용한 영문 생성기의 구현에 관한 연구)

  • 정희연;김희연;이웅재
    • Journal of Internet Computing and Services
    • /
    • v.1 no.2
    • /
    • pp.49-59
    • /
    • 2000
  • The majority of work done to date on natural language processing has focused on analysis and understanding of language, thus natural language generation had been relatively less attention than understanding, And people even tends to regard natural language generation CIS a simple reverse process of language understanding, However, need for natural language generation is growing rapidly as application systems, especially multi-language machine translation systems on the web, natural language interface systems, natural language query systems need more complex messages to generate, In this paper, we propose an algorithm to generate more flexible and natural sentence using lexical functions of Igor Mel'uk (Mel'uk & Zholkovsky, 1988) and systemic grammar.

  • PDF

Conversation Dataset Generation and Improve Search Performance via Large Language Model (Large Language Model을 통한 대화 데이터셋 자동 생성 및 검색 성능 향상)

  • Hyeongjun Choi;Beomseok Hong;Wonseok Choi;Youngsub Han;Byoung-Ki Jeon;Seung-Hoon Na
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.295-300
    • /
    • 2023
  • 대화 데이터와 같은 데이터는 사람이 수작업으로 작성해야 하기 때문에 데이터셋 구축에 시간과 비용이 크게 발생한다. 현재 대두되고 있는 Large Language Model은 이러한 대화 생성에서 보다 자연스러운 대화 생성이 가능하다는 이점이 존재한다. 이번 연구에서는 LLM을 통해 사람이 만든 적은 양의 데이터셋을 Fine-tuning 하여 위키백과 문서로부터 데이터셋을 만들어내고, 이를 통해 문서 검색 모델의 성능을 향상시켰다. 그 결과 학습 데이터와 같은 문서집합에서 MRR 3.7%p, 위키백과 전체에서 MRR 4.5%p의 성능 향상을 확인했다.

  • PDF

Concept-based Translation System in the Korean Spoken Language Translation System (한국어 대화체 음성언어 번역시스템에서의 개념기반 번역시스템)

  • Choi, Un-Cheon;Han, Nam-Yong;Kim, Jae-Hoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.8
    • /
    • pp.2025-2037
    • /
    • 1997
  • The concept-based translation system, which is a part of the Korean spoken language translation system, translates spoken utterances from Korean speech recognizer into one of English, Japanese and Korean in a travel planning task. Our system regulates semantic rather than the syntactic category in order to process the spontaneous speech which tends to be regarded as the one ungrammatical and subject to recognition errors. Utterances are parsed into concept structures, and the generation module produces the sentence of the specified target language. We have developed a token-separator using base-words and an automobile grammar corrector for Korean processing. We have also developed postprocessors for each target language in order to improve the readability of the generation results.

  • PDF

Constructing A Korean-English Bilingual Dictionary For Well-formed English Sentence Generations In A Glossary-based System (Glossary에 기초한 시스템에서의 적형태 영어문장 생성을 위한 한영 대역에 전자사전구축)

  • 신효필
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.2
    • /
    • pp.1-13
    • /
    • 2003
  • We introduce a way to generate morphologically and syntactically well-formed English sentences when building Korean to English bilingual dictionary for Machine Translation Systems. It has been proved that basic inflectional or structural descriptions for English sentences are by no means enough to generate proper English sentences because of traditional dictionary structures. Furthermore, much research has been focused only on how to disambiguate semantic ambiguities of words in a bilingual dictionary To take advantage of existing paperback Korean to English bilingual dictionary, its automatic conversion to an electronic version and methodologies to assign proper features to the descriptions for well-formed English sentences with minimum human effort have been proposed on the basis of the dictionary-specific structures. This approach was originally motivated for a glossary-based machine translation system, but it can be also applied to large scale dictionary work.

  • PDF

High-Quality Multimodal Dataset Construction Methodology for ChatGPT-Based Korean Vision-Language Pre-training (ChatGPT 기반 한국어 Vision-Language Pre-training을 위한 고품질 멀티모달 데이터셋 구축 방법론)

  • Jin Seong;Seung-heon Han;Jong-hun Shin;Soo-jong Lim;Oh-woog Kwon
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.603-608
    • /
    • 2023
  • 본 연구는 한국어 Vision-Language Pre-training 모델 학습을 위한 대규모 시각-언어 멀티모달 데이터셋 구축에 대한 필요성을 연구한다. 현재, 한국어 시각-언어 멀티모달 데이터셋은 부족하며, 양질의 데이터 획득이 어려운 상황이다. 따라서, 본 연구에서는 기계 번역을 활용하여 외국어(영문) 시각-언어 데이터를 한국어로 번역하고 이를 기반으로 생성형 AI를 활용한 데이터셋 구축 방법론을 제안한다. 우리는 다양한 캡션 생성 방법 중, ChatGPT를 활용하여 자연스럽고 고품질의 한국어 캡션을 자동으로 생성하기 위한 새로운 방법을 제안한다. 이를 통해 기존의 기계 번역 방법보다 더 나은 캡션 품질을 보장할 수 있으며, 여러가지 번역 결과를 앙상블하여 멀티모달 데이터셋을 효과적으로 구축하는데 활용한다. 뿐만 아니라, 본 연구에서는 의미론적 유사도 기반 평가 방식인 캡션 투영 일치도(Caption Projection Consistency) 소개하고, 다양한 번역 시스템 간의 영-한 캡션 투영 성능을 비교하며 이를 평가하는 기준을 제시한다. 최종적으로, 본 연구는 ChatGPT를 이용한 한국어 멀티모달 이미지-텍스트 멀티모달 데이터셋 구축을 위한 새로운 방법론을 제시하며, 대표적인 기계 번역기들보다 우수한 영한 캡션 투영 성능을 증명한다. 이를 통해, 우리의 연구는 부족한 High-Quality 한국어 데이터 셋을 자동으로 대량 구축할 수 있는 방향을 보여주며, 이 방법을 통해 딥러닝 기반 한국어 Vision-Language Pre-training 모델의 성능 향상에 기여할 것으로 기대한다.

  • PDF

Korean-English Non-Autoregressive Neural Machine Translation using Word Alignment (단어 정렬을 이용한 한국어-영어 비자기회귀 신경망 기계 번역)

  • Jung, Young-Jun;Lee, Chang-Ki
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.629-632
    • /
    • 2021
  • 기계 번역(machine translation)은 자연 언어로 된 텍스트를 다른 언어로 자동 번역 하는 기술로, 최근에는 주로 신경망 기계 번역(Neural Machine Translation) 모델에 대한 연구가 진행되었다. 신경망 기계 번역은 일반적으로 자기회귀(autoregressive) 모델을 이용하며 기계 번역에서 좋은 성능을 보이지만, 병렬화할 수 없어 디코딩 속도가 느린 문제가 있다. 비자기회귀(non-autoregressive) 모델은 단어를 독립적으로 생성하며 병렬 계산이 가능해 자기회귀 모델에 비해 디코딩 속도가 상당히 빠른 장점이 있지만, 멀티모달리티(multimodality) 문제가 발생할 수 있다. 본 논문에서는 단어 정렬(word alignment)을 이용한 비자기회귀 신경망 기계 번역 모델을 제안하고, 제안한 모델을 한국어-영어 기계 번역에 적용하여 단어 정렬 정보가 어순이 다른 언어 간의 번역 성능 개선과 멀티모달리티 문제를 완화하는 데 도움이 됨을 보인다.

  • PDF