• Title/Summary/Keyword: 자연언어 생성

Search Result 160, Processing Time 0.029 seconds

A Design and Implementation of 3D Facial Expressions Production System based on Muscle Model (근육 모델 기반 3D 얼굴 표정 생성 시스템 설계 및 구현)

  • Lee, Hyae-Jung;Joung, Suck-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.932-938
    • /
    • 2012
  • Facial expression has its significance in mutual communication. It is the only means to express human's countless inner feelings better than the diverse languages human use. This paper suggests muscle model-based 3D facial expression generation system to produce easy and natural facial expressions. Based on Waters' muscle model, it adds and used necessary muscles to produce natural facial expressions. Also, among the complex elements to produce expressions, it focuses on core, feature elements of a face such as eyebrows, eyes, nose, mouth, and cheeks and uses facial muscles and muscle vectors to do the grouping of facial muscles connected anatomically. By simplifying and reconstructing AU, the basic nuit of facial expression changes, it generates easy and natural facial expressions.

Dynamic Sentence General ion for a Conversational Agent Using Sentence Plan Tree and Genetic Programming (문장계획 트리와 유전자 프로그래밍을 이용한 대화형 에이전트의 동적 문장생성)

  • Lim Sungsoo;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.538-540
    • /
    • 2005
  • 대화형 에이전트가 다양한 분야에서 적용됨에 따라서 현실성 있는 대화 생성을 위한 자연언어 생성에 대한 연구가 관심을 끌고 있다. 대화형 에이전트에서는 보통 미리 준비된 문장을 이용하여 사용자와 대화를 수행하지만, 최근에는 문장을 동적으로 생성하고 학습함으로써 보다 유연하고 현실성있는 서비스를 제공하는 대화형 에이전트가 활발히 연구되고 있다. 본 논문에서는 문장계획 트리를 인코딩 방법으로 적용한 대화형 유전자 프로그래밍을 통해 대화형 에이전트의 문장을 생성하는 방법을 제안한다. 피험자 12명을 대상으로 템플릿 기반 시스템과의 비교 실험결과, 제안하는 방법의 유용성을 확인할 수 있었다.

  • PDF

FromTo/KE: A Korean-English Machine Translation (에서로/KE:한영 기계 번역 시스템)

  • Yuh, Sang-Hwa;Kim, Young-Kil;Choi, Sung-Kwon;Kim, Tae-Wan;Park, Dong-In;Seo, Jung-Yun
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.283-287
    • /
    • 1997
  • 본 논문에서는 당 연구소 주관으로 연구개발정보센터(KORDIC), 서울대와 공동으로 개발중인 한영 기계번역 시스템, '에서로/KE'의 prototype system을 설명한다. 에서로/KE는 KORDIC에서 한국어 형태소 분석기와 Tagger를 개발하고, 서울대에서 한국어 구문해석기와 한영 변환기를 개발하고, SERI에서 영어 구문 생성기와 영어 형태소 생성기를 개발한다. 한국어 Tagger는 HMM에 기반하여 제작되었으며 sample 200문장에 대해 98.9%의 정확률을 보인다. 한국어 구문 해석기는 의존 문법에 기반하여 CYK 알고리즘을 사용하여 제작되었으며 중의성 해결을 위해 29개의 최적 parse 선택 규칙이 구현되어 있다. 한영 변환기는 collocation과 idiom에 기반하여 한영 변환을 수행한다. 영어 구문 생성기는 Tree 변환 언어인 GWL(Grammar Writing Language)를 사용하여 작성되었으며, 영어 형태소 생성기는 최종적으로 자연스러운 영어 표층문을 생성한다. 에서로/KE는 현재 1차년도 Prototype system이 Unix 환경에서 구현되어 있으며, 현재 각 모듈별 성능 개선과 대량 사전 구축을 통해 상용화될 예정이다.

  • PDF

Processing of Inflectional forms for the French-Korean Collocational Database (불-한 연어 데이터베이스 구축을 위한 굴절 정보의 처리)

  • Yoon, Ae-Sun;Jeong, Hwi-Woong;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.267-272
    • /
    • 2001
  • 구(phrase) 단위 또는 문장(sentence) 단위의 연어(collocation) 정보는 자연언어 처리를 위한 단일어 또는 이중어 데이터베이스를 구축할 수 있는 중요한 기초 자료가 될 뿐 아니라, 외국어 학습에서도 어휘 단계를 넘어선 학습 자료를 제공할 수 있다. 불어는 굴절 언어(inflectional language)로서 기본형 대 굴절형의 비율이 약 1:9 정도로 비교적 굴절 비율이 높은 언어다. 또한 불어 표제어 중 95% 이상을 차지하는 불어의 동사, 명사, 형용사 중 상당한 비율이 암기해야 할 목록(list)이라는 특성을 갖기 때문에 검색과 학습에 있어 오류가 지속적으로 일어나는 부분이다. 표제어의 검색의 경우 불어 굴절 현상을 지원하는 전자 사전이 개발되어 있지만 아직까지 연어 정보에서 굴절형을 지원할 수 사전 또는 데이터베이스는 개발되어 있지 않다. 본 연구의 목적은 전자 사전과 형태소 분석기를 이용하여 굴절형 처리를 지원할 수 있는 불-한 연어 데이터베이스를 구축하는데 있다. 이를 위해 부산대학교 언어정보 연구실에서 개발한 불어 형태소 분석기 Infection와 불-한 전자 사전 Franco를 사용하였으며, 지금까지 구축된 불-한 연어 정보는 94,965 개이다. 본 고에서는 두 정보를 이용하여 불어 굴절형 정보를 분석 및 생성하는 방식 및 불-한 연어 데이터베이스 구조를 살펴 본다.

  • PDF

A Study on the Knowledge-Based System for Automaic Abstracting (자동 초록을 위한 지식 기반 시스템 설계에 관한 연구)

  • 최인숙
    • Journal of the Korean Society for information Management
    • /
    • v.6 no.1
    • /
    • pp.93-117
    • /
    • 1989
  • The objective of this study is to design an automatic abstracting system through the analysis of natural language texts. For this purpose a knowledge-based system operating on the basis of domain knowledge was developed. The procedure of generating an abstract consists of three steps: (1) A knowledge-base containing domain knowledge necessary to understand a text is constructed using frame and semantic network structures,and preliminary abstracts are prepared for various cases. (2) Input text is analysed on the basis of domain knowledge in order to extract information filling slots of the abstract with. (3) A Preliminary abstract corresponding to the input text is called and filled with the information, completing the abstract.

  • PDF

Building a Corpus for Korean Tutoring Chatbot (한국어 튜터링 챗봇을 위한 말뭉치 구축)

  • Kim, Hansaem;Choi, Kyung-Ho;Han, Ji-Yoon;Jung, Hae-Young;Kwak, Yong-Jin
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.288-293
    • /
    • 2017
  • 교수-학습 발화는 발화 턴 간에 규칙화된 인과관계가 강하고 자연 발화에서의 출현율이 낮다. 일반적으로 어휘부, 표현 제시부, 대화부로 구성되며 커리큘럼과 화제에 따라 구축된 언어자원이 필요하다. 기존의 말뭉치는 이러한 교수-학습 발화의 특징을 반영하지 않았기 때문에 한국어 교육용 튜터링 챗봇을 개발하는 데에 활용도가 떨어진다. 이에 따라 이 논문에서는 자연스러운 언어 사용 수집, 도구 기반의 수집, 주제별 수집 및 분류, 점진적 구축 절차의 원칙에 따라 교수-학습의 실제 상황을 반영하는 준구어 말뭉치를 구축한다. 교실에서 발생하는 언어학습 상황을 시나리오로 구성하여 대화 흐름을 제어하고 채팅용 메신저와 유사한 형태의 도구를 통해 말뭉치를 구축한다. 이 연구는 한국어 튜터링 챗봇을 개발하기 위해 말뭉치 구축용 챗봇과 한국어 학습자, 한국어 교수자가 시나리오를 기반으로 발화문을 생성한 준구어 말뭉치를 최초로 구축한다는 데에 의의가 있다.

  • PDF

A Domain-Dependent Question-Answering System (이벤트 탐색을 사용하는 일정 영역 질의 응답 시스템의 구현)

  • Chang, Du-Seong;Oh, Jong-Hun;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.414-421
    • /
    • 2001
  • 본 논문에서는 한정된 영역을 대상으로 하는 질의응답 시스템에서 사용자의 질의를 해석하고 적당한 대답을 생성하기 위해 백과사전이나 일반사전 등과 같은 지식원에서 추출된 구조화된 지식을 사용하는 과정을 기술한다. 질의응답을 위하여 지식원은 그 단락의 의미에 따라 구조화되고 각 단락은 논리형식으로 변환되었으며, 논리형식 내 각 개체들은 사전 정의문에 따라 확장되었다. 이 구조화된 지식은 입력된 자연언어 질의문에서 질의의 의도를 추출하고, 질의에 포함되어 있는 지식에 의미속성을 부착하기 위해 사용된다. 지식원의 논리형식 변환을 위해 한국어의 논리형식이 도입되었으며, 사용된 지식원은 우리말 큰사전과 계몽백과사전의 30여개 질병정의문이다.

  • PDF

KMM: A Detailed Morphological Analysis for Korean (구조화된 상세 정보를 제공하는 한국어 형태소 분석기: KMM)

  • Kim, Soora
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.202-206
    • /
    • 2010
  • 이 논문에서는 한국어 형태소 분석기 KMM(Korean Malaga Morphology)을 소개하고자 한다. KMM의 개발 동기는 이후 자연언어 처리 단계의 기반으로 사용될 수 있을 뿐 아니라 이론 형태론 연구의 도구로도 사용될 수 있도록 상세한 형태 동사 의미 정보를 제공하는 것이었다. 이론적 틀은 좌연접 문법(Left-Associative Grammar)에 기초한 LA-MORPH이며, 좌연접 기반 문법 개발 도구인 MALAGA로 구현되었다. LA-MORPH에 기반한 KMM은 분석 실행중이 아닐 때에는 사전의 규모를 최소한으로 유지하다가 분석에 필요할 때에만 분석용 사전을 자동으로 생성한다. 형태소 분석은 분석용 사전에 근거하여, 매칭과 결합이라는 단순한 알고리즘만을 사용한다. KMM의 분석은 동사 어절의 경우, 시제, 서법, 문형, 대우법, 명사 어절의 경우 격정보, 수사 결합어절의 경우 추출된 수랑 정보 등과 같은 상세한 정보를 제시한다. 세종 말뭉치와 KIBS 말뭉치를 KMM 을 이용해서 분석한 결과 각각의 94.96%와 94.59%의 분석률과 88.4%와 90.7%의 정확도를 보였다.

  • PDF

KommonGen: A Dataset for Korean Generative Commonsense Reasoning Evaluation (KommonGen: 한국어 생성 모델의 상식 추론 평가 데이터셋)

  • Seo, Jaehyung;Park, Chanjun;Moon, Hyeonseok;Eo, Sugyeong;Kang, Myunghoon;Lee, Seounghoon;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.55-60
    • /
    • 2021
  • 최근 한국어에 대한 자연어 처리 연구는 딥러닝 기반의 자연어 이해 모델을 중심으로 각 모델의 성능에 대한 비교 분석과 평가가 활발하게 이루어지고 있다. 그러나 한국어 생성 모델에 대해서도 자연어 이해 영역의 하위 과제(e.g. 감정 분류, 문장 유사도 측정 등)에 대한 수행 능력만을 정량적으로 평가하여, 생성 모델의 한국어 문장 구성 능력이나 상식 추론 과정을 충분히 평가하지 못하고 있다. 또한 대부분의 생성 모델은 여전히 간단하고 일반적인 상식에 부합하는 자연스러운 문장을 생성하는 것에도 큰 어려움을 겪고 있기에 이를 해결하기 위한 개선 연구가 필요한 상황이다. 따라서 본 논문은 이러한 문제를 해결하기 위해 한국어 생성 모델이 일반 상식 추론 능력을 바탕으로 문장을 생성하도록 KommonGen 데이터셋을 제안한다. 그리고 KommonGen을 통해 한국어 생성 모델의 성능을 정량적으로 비교 분석할 수 있도록 평가 기준을 구성하고, 한국어 기반 자연어 생성 모델의 개선 방향을 제시하고자 한다.

  • PDF

Sequential Sentence Classification Model based on ELECTRA (ELECTRA 기반 순차적 문장 분류 모델)

  • Choi, Gi-Hyeon;Kim, Hark-Soo;Yang, Seong-Yeong;Jeong, Jae-Hong;Lim, Tae-Gu;Kim, Jong-Hoon;Park, Chan-Kyu
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.327-330
    • /
    • 2020
  • 순차적 문장 분류는 여러 문장들을 입력으로 받아 각 문장들에 대하여 사전 정의된 라벨을 할당하는 작업을 말한다. 일반적인 문장 분류와 대조적으로 기준 문장과 주변 문장 사이의 문맥 정보가 분류에 큰 영향을 준다. 따라서 입력 문장들 사이의 문맥 정보를 반영하는 과정이 필수적이다. 최근, 사전 학습 기반 언어 모델의 등장 이후 여러 자연 언어 처리 작업에서 큰 성능 향상이 있었다. 앞서 언급하였던 순차적 문장 분류 작업의 특성상 문맥 정보를 반영한 언어 표현을 생성하는 사전 학습 기반 언어 모델은 해당 작업에 매우 적합하다는 가설을 바탕으로 ELECTRA 기반 순차적 분류 모델을 제안하였다. PUBMED-RCT 데이터 셋을 사용하여 실험한 결과 제안 모델이 93.3%p로 가장 높은 성능을 보였다.

  • PDF