• Title/Summary/Keyword: 자연언어 생성

Search Result 160, Processing Time 0.023 seconds

Loanword Recognition Using Deep Learning (심층학습을 이용한 음절태깅 기반의 외래어 인식 시스템)

  • Park, Ho-Min;Kim, Chang-Hyun;Cheon, Min-Ah;Noh, Kyung-Mok;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.71-75
    • /
    • 2017
  • 외래어란 외국어로부터 들어와 한국어에 동화되고 한국어로서 사용되는 언어이다. 나날이 우리의 언어사용 문화에서 외래어의 사용 비율은 높아져가는 추세로, 전문분야에서는 특히 두드러진다. 그러므로 더 효율적이고 효과적인 자연언어처리를 위해서 문서 내 외래어 인식은 중요한 전처리 과정이다. 따라서 본 논문에서는 bidirectional LSTM(이하 bi-LSTM)-CRF 모형의 심층학습을 이용한 음절태깅 기반의 외래어 인식 시스템을 제안한다. 제안하는 시스템의 외래어 인식 학습 과정은 다음과 같다. 첫째, 학습용 말뭉치 자료의 한글 음절들과 공백, 마침표(.)를 토대로 word2vec을 통해 학습용 피쳐(feature) 자료를 생성한다. 둘째, 학습용 말뭉치 자료와 학습용 피쳐 자료를 결합하여 bi-LSTM 모형 학습 자료를 구축한다. 셋째, bi-LSTM 모형을 거쳐 학습된 결과물을 CRF 모형에서 로그 가능도(log likelyhood)와 비터비(Viterbi) 알고리즘을 통해 학습 결과물을 내놓는다. 넷째, 학습용 말뭉치 자료의 정답과 비교한 뒤 모형 내부의 수치들을 조정한다. 다섯째, 학습을 마칠 때까지 반복한다. 본 논문에서 제안하는 시스템을 이용하여 자체적인 뉴스 수집 자료에 대해서 높은 정확도와 재현율을 기록하였다.

  • PDF

Generation of Compound Nouns Using Automatic Constructed Syntactic Patterns and Semantic Network (자동 생성한 구문패턴과 의미망을 이용한 복합명사 생성)

  • Im, Ji-Hui;Choe, Ho-Seop;Ock, Cheol-Young
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.655-658
    • /
    • 2004
  • 본 논문은 구문패턴과 의미망을 이용하여 복합명사를 생성하는 방법을 제안하고, 제안된 방법으로 설계 구현된 시스템, 복합명사 생성기(Compound Nouns Generator : CNG)를 제시한다. 복합명사에 관한 연구는 형태적, 구문적, 의미적인 관점에서의 분석과 생성에 이르기까지 폭넓게 진행되고 있다. 본 논문에서는, 사전에 등재된 표제어만을 복합명사로 인정하고, 나머지는 1차적으로 명사 연결구로 파악한다. 그리고 이것을 다시 신형 복합명사와 명사 연결구로 파악함으로써, 복합명사에 대한 명확한 기준을 제시하여 자연언어처리, 정보검색 등에서 효율성을 높이고자 하였다. 본 논문에서 제안한 시스템은 복합명사 확장을 위해 구문패턴을 자동 생성함으로써 시스템의 융통성을 향상시키고, 구문패턴과 의미망을 통해 생성된 복합명사와 명사 연결구의 말뭉치상의 빈도정보를 이용함으로써 고빈도의 명사 연결구가 복합명사로서 굳어질 수 있는 가능성을 보여주기도 한다. 또한, 구문패턴과 의미망을 통해 생성된 명사 연결구를 비교하여 생성된 신형 복합명사는 구문패턴에 의해 뜻풀이가 자동으로 생성된다.

  • PDF

Implementation of Iconic Language for the Language Support System of the Language Disorders (언어 장애인의 언어보조 시스템을 위한 아이콘 언어의 구현)

  • Choo Kyo-Nam;Woo Yo-Seob;Min Hong-Ki
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.479-488
    • /
    • 2006
  • The iconic language interlace is designed to provide more convenient environments for communication to the target system than the keyboard-based interface. For this work, tendencies and features of vocabulary are analyzed in conversation corpora constructed from the corresponding domains with high degree of utilization, and the meaning and vocabulary system of iconic language are constructed through application of natural language processing methodologies such as morphological, syntactic and semantic analyses. The part of speech and grammatical rules of iconic language are defined in order to make the situation corresponding the icon to the vocabulary and meaning of the Korean language and to communicate through icon sequence. For linguistic ambiguity resolution which may occur in the iconic language and for effective semantic processing, semantic data focused on situation of the iconic language are constructed from the general purpose Korean semantic dictionary and subcategorization dictionary. Based on them, the Korean language generation from the iconic interface in semantic domain is suggested.

A Comic Facial Expression Method for Intelligent Avatar Communications in the Internet Cyberspace (인터넷 가상공간에서 지적 아바타 통신을 위한 코믹한 얼굴 표정의 생성법)

  • 이용후;김상운;청목유직
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.1
    • /
    • pp.59-73
    • /
    • 2003
  • As a means of overcoming the linguistic barrier between different languages in the Internet, a new sign-language communication system with CG animation techniques has been developed and proposed. In the system, the joint angles of the arms and the hands corresponding to the gesture as a non-verbal communication tool have been considered. The emotional expression, however, could as play also an important role in communicating each other. Especially, a comic expression is more efficient than real facial expression, and the movements of the cheeks and the jaws are more important AU's than those of the eyebrow, eye, mouth etc. Therefore, in this paper, we designed a 3D emotion editor using 2D model, and we extract AU's (called as PAU, here) which play a principal function in expressing emotions. We also proposed a method of generating the universal emotional expression with Avatar models which have different vertex structures. Here, we employed a method of dynamically adjusting the AU movements according to emotional intensities. The proposed system is implemented with Visual C++ and Open Inventor on windows platforms. Experimental results show a possibility that the system could be used as a non-verbal communication means to overcome the linguistic barrier.

Korean Structural Disambiguation using Adverb Information (부사 정보를 이용한 한국어 구조 중의성 해소)

  • 신승은;서영훈
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.110-115
    • /
    • 2000
  • 자연 언어 처리의 구문 구조 분석에서는 중의성 있는 결과가 많이 생성된다. 이러한 중의성을 해소하는데 어휘정보가 유용하다는 것은 잘 알려져 있으며, 이러한 어휘정보와 이를 이용한 중의성 해소에 관한 연구가 많이 이루어지고 있다. 본 논문은 한국어의 구문 구조 분석 시 부사에 의해 발생되는 중의성을 해소하기 위해 수식어 사전을 이용하여 구문 분석에서의 구조 중의성을 해소하였다. 수식어 사전의 어휘정보와 대상 말뭉치를 통해 각각의 부사에 대한 문법을 구성하고, 이를 이용하여 한국어 구문 구조 분석에서 부사에 의해 발생되는 중의성을 줄일 수 있다.

  • PDF

The Method of Deriving Keywords Using Concept Rules (개념 규칙을 이용한 키워드 도출방법)

  • 이태헌;박기홍
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.685-687
    • /
    • 2002
  • 일반적으로 인간이 사용하는 몇 개의 주요단어를 이용하여, 문서의 분야나 주제어가 되는 일본어 키워드를 추출하는 점에 주목한다. 먼저, 학술논문에서 저자 자신이 부여한 키워드 중 분야 명이나 주제어가 문서 중에 출현하지 않는 경우를 분석하고, 단어의 개념정보를 기초로 복합어 생성규칙을 구축한다. 문서 의미와 상관없는 키워드의 추출을 억제하기 위해 중요도 결정법을 새롭게 제안한다. 추출된 키워드의 타당성 검사를 위해 자연.음성언어에 관한 일본어 논문 65파일의 타이틀과 초록부분을 이용하여 추출된 키워드의 타당성에 대한 실험을 한 결과 추출 정밀도는 중요도의 상위 1개를 출력한 경우 75%가 되어 제안방법의 유효성을 확인할 수 있었다.

  • PDF

Improvement of Knowledge Retriever Performance of Open-domain Knowledge-Grounded Korean Dialogue through BM25-based Hard Negative Knowledge Retrieval (BM25 기반 고난도 부정 지식 검색을 통한 오픈 도메인 지식 기반 한국어 대화의 지식 검색 모듈 성능 향상)

  • Seona Moon;San Kim;Saim Shin
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.125-130
    • /
    • 2022
  • 최근 자연어처리 연구로 지식 기반 대화에서 대화 내용에 자유로운 주제와 다양한 지식을 포함하는 연구가 활발히 이루어지고 있다. 지식 기반 대화는 대화 내용이 주어질 때 특정 지식 정보를 포함하여 이어질 응답을 생성한다. 이때 대화에 필요한 지식이 검색 가능하여 선택에 제약이 없는 오픈 도메인(Open-domain) 지식 기반 대화가 가능하도록 한다. 오픈 도메인 지식 기반 대화의 성능 향상을 위해서는 대화에 이어지는 자연스러운 답변을 연속적으로 생성하는 응답 생성 모델의 성능 뿐만 아니라, 내용에 어울리는 응답이 생성될 수 있도록 적합한 지식을 선택하는 지식 검색 모델의 성능 향상도 매우 중요하다. 본 논문에서는 오픈 도메인 지식 기반 한국어 대화에서 지식 검색 성능을 높이기 위해 밀집 벡터 기반 검색 방식과 주제어(Keyword) 기반의 검색 방식을 함께 사용하는 것을 제안하였다. 먼저 밀집 벡터 기반의 검색 모델을 학습하고 학습된 모델로부터 고난도 부정(Hard negative) 지식 후보를 생성하고 주제어 기반 검색 방식으로 고난도 부정 지식 후보를 생성하여 각각 밀집 벡터 기반의 검색 모델을 학습하였다. 성능을 측정하기 위해 전체 지식 중에서 하나의 지식을 검색했을 때 정답 지식인 경우를 계산하였고 고난도 부정 지식 후보로 학습한 주제어 기반 검색 모델의 성능이 6.175%로 가장 높은 것을 확인하였다.

  • PDF

Automatic Generation of Issue Analysis Report Based on Social Big Data Mining (소셜 빅데이터 마이닝 기반 이슈 분석보고서 자동 생성)

  • Heo, Jeong;Lee, Chung Hee;Oh, Hyo Jung;Yoon, Yeo Chan;Kim, Hyun Ki;Jo, Yo Han;Ock, Cheol Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.12
    • /
    • pp.553-564
    • /
    • 2014
  • In this paper, we propose the system for automatic generation of issue analysis report based on social big data mining, with the purpose of resolving three problems of the previous technologies in a social media analysis and analytic report generation. Three problems are the isolation of analysis, the subjectivity of experts and the closure of information attributable to a high price. The system is comprised of the natural language query analysis, the issue analysis, the social big data analysis, the social big data correlation analysis and the automatic report generation. For the evaluation of report usefulness, we used a Likert scale and made two experts of big data analysis evaluate. The result shows that the quality of report is comparatively useful and reliable. Because of a low price of the report generation, the correlation analysis of social big data and the objectivity of social big data analysis, the proposed system will lead us to the popularization of social big data analysis.

Recognizing Emotional Content of Emails as a byproduct of Natural Language Processing-based Metadata Extraction (이메일에 포함된 감성정보 관련 메타데이터 추출에 관한 연구)

  • Paik, Woo-Jin
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.2
    • /
    • pp.167-183
    • /
    • 2006
  • This paper describes a metadata extraction technique based on natural language processing (NLP) which extracts personalized information from email communications between financial analysts and their clients. Personalized means connecting users with content in a personally meaningful way to create, grow, and retain online relationships. Personalization often results in the creation of user profiles that store individuals' preferences regarding goods or services offered by various e-commerce merchants. We developed an automatic metadata extraction system designed to process textual data such as emails, discussion group postings, or chat group transcriptions. The focus of this paper is the recognition of emotional contents such as mood and urgency, which are embedded in the business communications, as metadata.

Concept-based Compound Keyword Extraction (개념기반 복합키워드 추출방법)

  • Lee, Sangkon;Lee, Taehun
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.2
    • /
    • pp.23-31
    • /
    • 2003
  • In general, people use a key word or a phrase as the name of field or subject word in document. This paper has focused on keyword extraction. First of all, we investigate that an author suggests keywords that are not occurred as contents words in literature, and present generation rules to combine compound keywords based on concept of lexical information. Moreover, we present a new importance measurement to avoid useless keywords that are not related to documents' contents. To verify the validity of extraction result, we collect titles and abstracts from research papers about natural language and/or voice processing studies, and obtain the 96% precision in a top rank of extraction result.

  • PDF