• Title/Summary/Keyword: 자연어 추론

Search Result 86, Processing Time 0.024 seconds

SRLev-BIH: An Evaluation Metric for Korean Generative Commonsense Reasoning (SRLev-BIH: 한국어 일반 상식 추론 및 생성 능력 평가 지표)

  • Jaehyung Seo;Yoonna Jang;Jaewook Lee;Hyeonseok Moon;Sugyeong Eo;Chanjun Park;Aram So;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.176-181
    • /
    • 2022
  • 일반 상식 추론 능력은 가장 사람다운 능력 중 하나로써, 인공지능 모델이 쉽게 모사하기 어려운 영역이다. 딥러닝 기반의 언어 모델은 여전히 일반 상식에 기반한 추론을 필요로 하는 분야에서 부족한 성능을 보인다. 특히, 한국어에서는 일반 상식 추론과 관련한 연구가 상당히 부족한 상황이다. 이러한 문제 완화를 위해 최근 생성 기반의 일반 상식 추론을 위한 한국어 데이터셋인 Korean CommonGen [1]이 발표되었다. 그러나, 해당 데이터셋의 평가 지표는 어휘 단계의 유사성과 중첩에 의존하는 한계를 지니며, 생성한 문장이 일반 상식에 부합한 문장인지 측정하기 어렵다. 따라서 본 논문은 한국어 일반 상식 추론 및 생성 능력에 대한 평가 지표를 개선하기 위해 문장 성분의 의미역과 자모의 형태 변화를 바탕으로 생성 결과를 평가하는 SRLev, 사람의 평가 결과를 학습한 BIH, 그리고 두 평가 지표의 장점을 결합한 SRLev-BIH를 제안한다.

  • PDF

Korean Commonsense Reasoning Evaluation for Large Language Models (거대언어모델을 위한 한국어 상식추론 기반 평가)

  • Jaehyung Seo;Chanjun Park;Hyeonseok Moon;Sugyeong Eo;Aram So;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.162-167
    • /
    • 2023
  • 본 논문은 거대언어모델에 대한 한국어 상식추론 기반의 새로운 평가 방식을 제안한다. 제안하는 평가 방식은 한국어의 일반 상식을 기초로 삼으며, 이는 거대언어모델이 주어진 정보를 얼마나 잘 이해하고, 그에 부합하는 결과물을 생성할 수 있는지를 판단하기 위함이다. 기존의 한국어 상식추론 능력 평가로 사용하던 Korean-CommonGEN에서 언어 모델은 이미 높은 수준의 성능을 보이며, GPT-3와 같은 거대언어모델은 사람의 상한선을 넘어선 성능을 기록한다. 따라서, 기존의 평가 방식으로는 거대언어모델의 발전된 상식추론 능력을 정교하게 평가하기 어렵다. 더 나아가, 상식 추론 능력을 평가하는 과정에서 사회적 편견이나 환각 현상을 충분히 고려하지 못하고 있다. 본 연구의 평가 방법은 거대언어모델이 야기하는 문제점을 반영하여, 다가오는 거대언어모델 시대에 한국어 자연어 처리 연구가 지속적으로 발전할 수 있도록 하는 상식추론 벤치마크 구성 방식을 새롭게 제시한다.

  • PDF

Automatic Ontology Generation from Natural Language Sentences Using Predicate Ontology (서술어 온톨로지를 이용한 자연어 문장으로부터의 온톨로지 자동 생성)

  • Min, Young-Kun;Lee, Bog-Ju
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.9
    • /
    • pp.1263-1271
    • /
    • 2010
  • Ontologies, the important implementation tools for semantic web, are widely used in various areas such as search, reasoning, and knowledge representation. Developing well-defined ontologies, however, requires a lot of resources in terms of time and materials. There have been efforts to construct ontologies automatically to overcome these problems. In this paper, ontologies are automatically constructed from the natural languages sentences directly. To do this, the analysis of morphemes and a sentence structure is performed at first. then, the program finds predicates inside the sentence and the predicates are transformed to the corresponding ontology predicates. For matching the corresponding ontology predicate from a predicate in the sentence, we develop the "predicate ontology". An experimental comparison between human ontology engineer and the program shows that the proposed system outperforms the human engineer in an accuracy.

The Bi-Cross Pretraining Method to Enhance Language Representation (Bi-Cross 사전 학습을 통한 자연어 이해 성능 향상)

  • Kim, Sung-ju;Kim, Seonhoon;Park, Jinseong;Yoo, Kang Min;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.320-325
    • /
    • 2021
  • BERT는 사전 학습 단계에서 다음 문장 예측 문제와 마스킹된 단어에 대한 예측 문제를 학습하여 여러 자연어 다운스트림 태스크에서 높은 성능을 보였다. 본 연구에서는 BERT의 사전 학습 문제 중 다음 문장 예측 문제에 대해 주목했다. 다음 문장 예측 문제는 자연어 추론 문제와 질의 응답 문제와 같이 임의의 두 문장 사이의 관계를 모델링하는 문제들에 성능 향상을 위해 사용되었다. 하지만 BERT의 다음 문장 예측 문제는 두 문장을 특수 토큰으로 분리하여 단일 문자열 형태로 모델에 입력으로 주어지는 cross-encoding 방식만을 학습하기 때문에 문장을 각각 인코딩하는 bi-encoding 방식의 다운스트림 태스크를 고려하지 않은 점에서 아쉬움이 있다. 본 논문에서는 기존 BERT의 다음 문장 예측 문제를 확장하여 bi-encoding 방식의 다음 문장 예측 문제를 추가적으로 사전 학습하여 단일 문장 분류 문제와 문장 임베딩을 활용하는 문제에서 성능을 향상 시키는 Bi-Cross 사전 학습 기법을 소개한다. Bi-Cross 학습 기법은 영화 리뷰 감성 분류 데이터 셋인 NSMC 데이터 셋에 대해 학습 데이터의 0.1%만 사용하는 학습 환경에서 Bi-Cross 사전 학습 기법 적용 전 모델 대비 5점 가량의 성능 향상이 있었다. 또한 KorSTS의 bi-encoding 방식의 문장 임베딩 성능 평가에서 Bi-Cross 사전 학습 기법 적용 전 모델 대비 1.5점의 성능 향상을 보였다.

  • PDF

Graph Reasoning and Context Fusion for Multi-Task, Multi-Hop Question Answering (다중 작업, 다중 홉 질문 응답을 위한 그래프 추론 및 맥락 융합)

  • Lee, Sangui;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.8
    • /
    • pp.319-330
    • /
    • 2021
  • Recently, in the field of open domain natural language question answering, multi-task, multi-hop question answering has been studied extensively. In this paper, we propose a novel deep neural network model using hierarchical graphs to answer effectively such multi-task, multi-hop questions. The proposed model extracts different levels of contextual information from multiple paragraphs using hierarchical graphs and graph neural networks, and then utilize them to predict answer type, supporting sentences and answer spans simultaneously. Conducting experiments with the HotpotQA benchmark dataset, we show high performance and positive effects of the proposed model.

Visual Commonsense Reasoning with Knowledge Graph (지식 그래프를 이용한 영상 기반 상식 추론)

  • Lee, Jae-Yun;Kim, In-Cheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.994-997
    • /
    • 2019
  • 영상 기반 상식 추론(VCR) 문제는 기존의 영상 기반 질문-응답(VQA) 문제들과는 달리, 영상에 포함된 사물들 간의 관계 파악과 답변 근거 제시 등 별도의 상식 추론이 요구되는 새로운 지능 문제이다. 본 논문에서는 입력 데이터(영상, 자연어 질문, 응답 리스트)에서 사물들 간의 관계와 맥락 정보를 추출해내는 모듈들 외에, 별도로 ConceptNet과 같은 외부 지식 베이스로부터 관련 상식들을 직접 가져다 GCN 기반의 지식 그래프 임베딩 과정을 거쳐 추가적으로 활용할 수 있는 모듈들을 포함한 새로운 심층 신경망 모델인 KG_VCR을 제안한다. 제안 모델인 KG_VCR의 세부 설계사항들을 소개하고, VCR 벤치마크 데이터 집합을 이용한 다양한 실험들을 통해 제안 모델의 성능을 입증한다.

Customized Information Analysis System Using National Defense News Data (국방 기사 데이터를 이용한 맞춤형 정보 분석 시스템)

  • Choi, Jung-Whoan;Lim, Chea-O
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.12
    • /
    • pp.457-465
    • /
    • 2010
  • Customized information analysis system is a software system that can help to extract useful information from non-structured natural language data, process the information to customized form, and provide future forecast and reasoning information. To implement the information analysis system, we need natural language processing technology to analyze natural language, information extraction technology to detect necessary entity and its relationship from text, and data mining technology to discover new and unknown information from extracting data. This paper suggest virtual customized information analysis system processing national defense news data and introduce base technologies for information analysis.

Deep learning model that considers the long-term dependency of natural language (자연 언어의 장기 의존성을 고려한 심층 학습 모델)

  • Park, Chan-Yong;Choi, Ho-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.281-284
    • /
    • 2018
  • 본 논문에서는 machine reading 분야에서 기존의 long short-term memory (LSTM) 모델이 가지는 문제점을 해결하는 새로운 네트워크를 제안하고자 한다. 기존의 LSTM 모델은 크게 두가지 제한점을 가지는데, 그 중 첫째는 forget gate로 인해 잊혀진 중요한 문맥 정보들이 복원될 수 있는 방법이 없다는 것이다. 자연어에서 과거의 문맥 정보에 따라 현재의 단어의 의미가 크게 좌지우지될 수 있으므로 올바른 문장의 이해를 위해 필요한 과거 문맥의 정보 유지는 필수적이다. 또 다른 문제는 자연어는 그 자체로 단어들 간의 복잡한 구조를 통해 문장이 이루어지는 반면 기존의 시계열 모델들은 단어들 간의 관계를 추론할 수 있는 직접적인 방법을 가지고 있지 않다는 것이다. 본 논문에서는 최근 딥 러닝 분야에서 널리 쓰이는 attention mechanism과 본 논문이 제안하는 restore gate를 결합한 네트워크를 통해 상기 문제를 해결하고자 한다. 본 논문의 실험에서는 기존의 다른 시계열 모델들과 비교를 통해 제안한 모델의 우수성을 확인하였다.

  • PDF

GMLP for Korean natural language processing and its quantitative comparison with BERT (GMLP를 이용한 한국어 자연어처리 및 BERT와 정량적 비교)

  • Lee, Sung-Min;Na, Seung-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.540-543
    • /
    • 2021
  • 본 논문에서는 Multi-Head Attention 대신 Spatial Gating Unit을 사용하는 GMLP[1]에 작은 Attention 신경망을 추가한 모델을 구성하여 뉴스와 위키피디아 데이터로 사전학습을 실시하고 한국어 다운스트림 테스크(감성분석, 개체명 인식)에 적용해 본다. 그 결과, 감성분석에서 Multilingual BERT보다 0.27%높은 Accuracy인 87.70%를 보였으며, 개체명 인식에서는 1.6%높은 85.82%의 F1 Score를 나타내었다. 따라서 GMLP가 기존 Transformer Encoder의 Multi-head Attention[2]없이 SGU와 작은 Attention만으로도 BERT[3]와 견줄만한 성능을 보일 수 있음을 확인할 수 있었다. 또한 BERT와 추론 속도를 비교 실험했을 때 배치사이즈가 20보다 작을 때 BERT보다 1에서 6배 정도 빠르다는 것을 확인할 수 있었다.

  • PDF

Cross-Validated Ensemble Methods in Natural Language Inference (자연어 추론에서의 교차 검증 앙상블 기법)

  • Yang, Kisu;Whang, Taesun;Oh, Dongsuk;Park, Chanjun;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.8-11
    • /
    • 2019
  • 앙상블 기법은 여러 모델을 종합하여 최종 판단을 산출하는 기계 학습 기법으로서 딥러닝 모델의 성능 향상을 보장한다. 하지만 대부분의 기법은 앙상블만을 위한 추가적인 모델 또는 별도의 연산을 요구한다. 이에 우리는 앙상블 기법을 교차 검증 방법과 결합하여 앙상블 연산을 위한 비용을 줄이며 일반화 성능을 높이는 교차 검증 앙상블 기법을 제안한다. 본 기법의 효과를 입증하기 위해 MRPC, RTE 데이터셋과 BiLSTM, CNN, BERT 모델을 이용하여 기존 앙상블 기법보다 향상된 성능을 보인다. 추가로 교차 검증에서 비롯한 일반화 원리와 교차 검증 변수에 따른 성능 변화에 대하여 논의한다.

  • PDF