Brand image refers to how customers, stakeholders and the market see and recognize the brand. A positive brand image leads to continuous purchases, but a negative brand image is directly linked to consumers' buying behavior, such as stopping purchases, so from the corporate perspective, it needs to be quickly and accurately identified. Currently, methods of investigating brand images include surveys and SNS surveys, which have limited number of samples and are time-consuming and costly. Therefore, in this study, we are going to conduct an emotional analysis of text data on social media by utilizing the machine learning based KoBERT model, and then suggest how to use it for game corporate brand image analysis and verify its performance. The result has proved some degree of usability showing the same ranking within five brands when compared with the BRI Korea's brand reputation ranking.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.397-402
/
2022
익명 네트워크 기술에 기반한 다크웹은 일반 표면웹보다 더 강화된 익명성을 제공한다. 최근 이 익명성을 악용하여 다수의 다크웹 사용자들이 다크웹 내에서 범죄 행위를 모의하는 행위가 꾸준히 발생하고 있다. 특히, 국내 다크웹 사용자들은 마약 유포를 위한 방법을 공유하거나 성착취물 유포 행위 등에 직간접적으로 가담하고 있다. 이와 같은 범죄 행위들은 수사 기관의 눈을 피해 현재까지도 계속해서 발생하고 있어 국내 다크웹 범죄 동향 파악의 필요성이 증대되고 있다. 그러나 다크웹 특성상 범죄 행위를 논의하는 게시글을 수집하기가 어렵고, 다크웹 내에서의 언어 사용 특성에 대한 이해 부족으로 그동안 다크웹 사용자들이 어떤 내용의 범죄를 모의하는지 파악하기가 어려웠다. 본 논문에서는 국내 사용자들이 활동하는 다크웹 포럼들을 중심으로 사용자들의 언어 사용 특성을 연구하고, 이를 통해 다크웹에서 다뤄지는 범죄 유형들을 분석한다. 이를 위해, 자연어처리 기반의 분석 방법론을 적용하여 다크웹에서 공유되는 게시글을 수집하고 다크웹 사용자들의 은어와 특정 범죄군에서 선호되는 언어 특성을 파악한다. 특히 현재 다크웹 내에서 사용자들 사이에 관측되는 어휘들에 대한 기술통계 분석과 유의어 관계 분석을 수행하였고, 실제 다크웹 내에서 사용자들이 어떠한 범죄에 관심이 많은지를 분석하였으며, 더 나아가 수사의 효율성을 증대시키기 위한 소셜미디어, URL 인용 빈도에 대한 연구를 진행하였다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.131-134
/
2022
자연어처리 분야 중 질의응답 태스크는 전통적으로 많은 연구가 이뤄지고 있는 분야이며, 최근 밀집 벡터를 사용한 리트리버(Dense Retriever)가 성공함에 따라 위키피디아와 같은 방대한 정보를 활용하여 답변하는 오픈 도메인 QA(Open-domain Question Answering) 연구가 활발하게 진행되고 있다. 대표적인 검색 모델인 DPR(Dense Passage Retriever)은 바이 인코더(Bi-encoder) 구조의 리트리버로서, BERT 모델 기반의 질의 인코더(Query Encoder) 및 문단 인코더(Passage Encoder)를 통해 임베딩한 벡터 간의 유사도를 비교하여 문서를 검색한다. 하지만, BERT와 같이 엔티티(Entity) 정보에 대해 추가적인 학습을 하지 않은 언어모델을 기반으로 한 리트리버는 엔티티 정보가 중요한 질문에 대한 답변 성능이 저조하다. 본 논문에서는 엔티티 중심의 질문에 대한 답변 성능 향상을 위해, 엔티티를 잘 이해할 수 있는 LUKE 모델 기반의 리트리버를 제안한다. KorQuAD 1.0 데이터셋을 활용하여 한국어 리트리버의 학습 데이터셋을 구축하고, 모델별 리트리버의 검색 성능을 비교하여 제안하는 방법의 성능 향상을 입증한다.
Kim, Gyeong-min;Seo, Jaehyung;Lee, Soomin;Lim, Heui-seok
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.439-443
/
2021
기계 독해는 단락과 질의가 주어졌을 때 단락 내 정답을 찾는 자연어 처리 태스크이다. 최근 벤치마킹 데이터셋에서 사전학습 언어모델을 기반으로 빠른 발전을 보이며 특정 데이터셋에서 인간의 성능을 뛰어넘는 성과를 거두고 있다. 그러나 이는 단락 내 범위(span)에서 추출된 정보에 관한 것으로, 실제 연산을 요구하는 질의에 대한 응답에는 한계가 있다. 본 논문에서는 기존 범위 내에서 응답이 가능할 뿐만이 아니라, 연산에 관한 이산 추론을 요구하는 단락 및 질의에 대해서도 응답이 가능한 기계 독해 모델의 효과성을 검증하고자 한다. 이를 위해 영어 DROP (Discrete Reasoning Over the content of Paragraphs, DROP) 데이터셋으로부터 1,794개의 질의응답 쌍을 Google Translator API v2를 사용하여 한국어로 번역 및 정제하여 KoDROP (Korean DROP, KoDROP) 데이터셋을 구축하였다. 단락 및 질의를 참조하여 연산을 수행하기 위한 의미 태그를 한국어 KoBERT 및 KoELECTRA에 접목하여, 숫자 인식이 가능한 KoNABERT, KoNAELECTRA 모델을 생성하였다. 실험 결과, KoDROP 데이터셋은 기존 기계 독해 데이터셋과 비교하여 단락에 대한 더욱 포괄적인 이해와 연산 정보를 요구하였으며, 가장 높은 성능을 기록한 KoNAELECTRA는 KoBERT과 비교하여 F1, EM에서 모두 19.20의 월등한 성능 향상을 보였다.
Proceedings of the Korea Information Processing Society Conference
/
2022.11a
/
pp.583-585
/
2022
최근 기술의 발전으로 인해 자연어 처리 모델의 성능이 증가하고 있다. 그에 따라 평문 지문이 아닌 KorQuAD 2.0 과 같은 웹 문서를 지문으로 하는 기계 독해 과제를 해결하려는 연구가 증가하고 있다. 최근 기계 독해 과제의 대부분의 모델은 트랜스포머를 기반으로 하는 추세를 보인다. 그 중 대표적인 모델인 BERT 는 문자열의 순서에 대한 정보를 임베딩 과정에서 전달받는다. 한편 웹 문서는 태그 구조가 존재하므로 문서를 이해하는데 위치 정보 외에도 태그 정보도 유용하게 사용될 수 있다. 그러나 BERT 의 기존 임베딩은 웹 문서의 태그 정보를 추가적으로 모델에 전달하지 않는다는 문제가 있었다. 본 논문에서는 BERT 에 웹 문서 태그 정보를 효과적으로 전달할 수 있는 HTML 임베딩 기법 및 이를 위한 전처리 기법으로 HTML 태그 스택을 소개한다. HTML 태그 스택은 HTML 태그의 정보들을 추출할 수 있고 HTML 임베딩 기법은 이 정보들을 BERT 의 임베딩 과정에 입력으로 추가함으로써 웹 문서 질의 응답 과제의 성능 향상을 기대할 수 있다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.162-167
/
2023
본 논문은 거대언어모델에 대한 한국어 상식추론 기반의 새로운 평가 방식을 제안한다. 제안하는 평가 방식은 한국어의 일반 상식을 기초로 삼으며, 이는 거대언어모델이 주어진 정보를 얼마나 잘 이해하고, 그에 부합하는 결과물을 생성할 수 있는지를 판단하기 위함이다. 기존의 한국어 상식추론 능력 평가로 사용하던 Korean-CommonGEN에서 언어 모델은 이미 높은 수준의 성능을 보이며, GPT-3와 같은 거대언어모델은 사람의 상한선을 넘어선 성능을 기록한다. 따라서, 기존의 평가 방식으로는 거대언어모델의 발전된 상식추론 능력을 정교하게 평가하기 어렵다. 더 나아가, 상식 추론 능력을 평가하는 과정에서 사회적 편견이나 환각 현상을 충분히 고려하지 못하고 있다. 본 연구의 평가 방법은 거대언어모델이 야기하는 문제점을 반영하여, 다가오는 거대언어모델 시대에 한국어 자연어 처리 연구가 지속적으로 발전할 수 있도록 하는 상식추론 벤치마크 구성 방식을 새롭게 제시한다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.209-213
/
2023
최근 자연어 이해 분야에서 대규모 언어모델 기반으로 프롬프트를 활용하여 모델과 상호작용하는 방법이 널리 연구되고 있으며, 특히 상담 분야에서 언어모델을 활용한다면 내담자와의 자연스러운 대화를 주도할 수 있는 대화생성 모델로 확장이 가능하다. 내담자의 상황에 따라 개인화된 상담대화를 진행하는 모델을 학습시키려면 동일한 내담자에 대한 과거 및 차기 상담대화가 필요하지만, 기존의 데이터셋은 대체로 단일 대화세션으로 구축되어 있다. 본 논문에서는 언어모델을 활용하여 단일 대화세션으로 구축된 기존 상담대화 데이터셋을 확장하여 연속된 대화세션 구성의 학습데이터를 확보할 수 있는 프롬프트 기반 데이터 증강 기법을 제안한다. 제안 기법은 기존 대화내용을 반영한 요약질문 생성단계와 대화맥락을 유지한 차기 상담대화 생성 단계로 구성되며, 프롬프트 엔지니어링을 통해 상담 분야의 데이터셋을 확장하고 사용자 평가를 통해 제안 기법의 데이터 증강이 품질에 미치는 영향을 확인한다.
Recent interest in the diverse applications of artificial intelligence (AI) language models has highlighted the need to explore didactical uses in mathematics education. AI language models, capable of natural language processing, show promise in solving mathematical word problems. This study tested the capability of ChatGPT, an AI language model, to solve word problems from elementary school textbooks, and analyzed both the solutions and errors made. The results showed that the AI language model achieved an accuracy rate of 81.08%, with errors in problem comprehension, equation formulation, and calculation. Based on this analysis of solution processes and error types, the study suggests implications for the didactical application of AI language models in education.
In this study, we tried to produce moving-image works through sentiment analysis of music. First, Google natural language API was used for the sentiment analysis of lyrics, then the result was applied to the image visualization rules. In prior engineering researches, text-based sentiment analysis has been conducted to understand users' emotions and attitudes by analyzing users' comments and reviews in social media. In this study, the data was used as a material for the creation of artworks so that it could be used for aesthetic expressions. From the machine's point of view, emotions are substituted with numbers, so there is a limit to normalization and standardization. Therefore, we tried to overcome these limitations by linking the results of sentiment analysis of lyrics data with the rules of formative elements in visual arts. This study aims to transform existing traditional art works such as literature, music, painting, and dance to a new form of arts based on the viewpoint of the machine, while reflecting the current era in which artificial intelligence even attempts to create artworks that are advanced mental products of human beings. In addition, it is expected that it will be expanded to an educational platform that facilitates creative activities, psychological analysis, and communication for people with developmental disabilities who have difficulty expressing emotions.
Annual Conference on Human and Language Technology
/
1994.11a
/
pp.409-415
/
1994
Hitel 과 같은 전자정보 시스템은 사용자가 원하는 정보를 체계적으로 얻을 수 있도록 하기 위하여 메뉴들을 적당히 계층적으로 구성하여 제공하고 있다. 그러나, 보통 이 메뉴들의 계층이 정확한 분류법에 기초하여 만들어지지 않았을 뿐 아니라 그 양도 엄청나게 방대하여, 이 메뉴 계층을 이용하여 사용자가 원하는 정보를 얻기가 쉽지 않다. 실험적으로 보통 Hitel을 자주 이용하는 사람들도 자신이 주로 이용하는 메뉴들의 구성만 이해하고 있을뿐, 사용하지 않는 부분의 메뉴들의 구성은 잘 알지 못하는 것이 일반적이었다. 따라서 Hitel을 자주 이용하는 사용자도 자신이 이용해 보지 않은 정보를 얻기 쉽지 않으며, 더더욱 초보자에게는 이 메뉴계층을 이용하여 원하는 정보를 얻기가 쉽지 않은 실정이다. 본 연구에서는 정보검색 기술을 이용하여 Hitel과 같은 전자정보 시스템에서 사용자가 쉽게 자신이 원하는 정보를 얻을 수 있는 보조 시스템을 개발하고자 한다. 본 시스템은 사용자가 메뉴계층을 이용하기 전에 간략한 자연어로 입력을 주면, 여기에 적합한 메뉴나 실제 정보를 검색해 낸다. 따라서 사용자는 이 메뉴정보를 이용하여 메뉴계층을 쉽게 따라갈 수 있을 뿐 아니라, 경우에 따라서는 원하는 실제 정보를 검색하기 때문에 메뉴계층을 탐색할 필요가 없다. 본 연구에서는 자연어 입력을 최장 일치 방법으로 의미있는 명사들을 추출하여 불리한 질의어로 만든 후, 명사들 사이의 관계가 표현된 시소러스를 이용하여 이 질의어를 확장시킨다. 다음에 이 질의어들을 메뉴들과 부분/정확부합을 통하여 관련된 메뉴들을 찾아낸 후, 이들의 계층과제를 고려하여 최종 메뉴들을 검색한다. 본 시스템은 현재 C언어로 만들어져 구동중이며, 정확한 실험은 아직 하지 않았지만 높은 검색율을 보이고 있다. industrialized, was improved by introducing pressure in cooling procedure for both carbon and iron thermistors.er>$CHCl_3$>Hexane층 순으로 높은 활성을 나타냈다. 5. 아질산염소거능은 끝순, 들깨잎, 콩나물이 우수하였고 그중 들깨잎이 저해율 72%로 가장 높았으며, 용매분획 중에는 BuOH과 water추출물의 활성이 가장 높았다. 6. ACE 저해 효과는 고구마 부위별로는 끝순이 괴근에 비하여 1.5배 높았고, 들깨잎, 콩나물, 시금치보다 $1.9{\sim}3.7$배 높았다. 용매분획별로는 EtOAc, BuOH, water 추출물이 높은 활성을 보였다. 7. 이상을 종합하여 볼 때 고구마 끝순에는 페놀화합물이 다량 함유되어 있어 높은 항산화 활성을 가지며, 아질산염소거능 및 ACE저해활성과 같은 생리적 효과도 높아 기능성 채소로 이용하기에 충분한 가치가 있다고 판단된다.등의 관련 질환의 예방, 치료용 의약품 개발과 기능성 식품에 효과적으로 이용될 수 있음을 시사한다.tall fescue 23%, Kentucky bluegrass 6%, perennial ryegrass 8%) 및 white clover 23%를 유지하였다. 이상의 결과를 종합할 때, 초종과 파종비율에 따른 혼파초지의 건물수량과 사료가치의 차이를 확인할 수 있었으며, 레드 클로버 + 혼파 초지가 건물수량과 사료가치를 높이는데 효과적이었다.\ell}$ 이었으며 , yeast extract 첨가(添加)하여 배양시(培養時)는 yeast extract 농도(濃度)가 증가(增加)함에 따라 단백질(蛋白質) 함량(含量)도 증가(增加)하였다. 7. CHS-
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.