• 제목/요약/키워드: 자연어 분석

검색결과 562건 처리시간 0.035초

게임에서의 지능적 NPC 구현을 위한 자연어 대화 처리 기법 (A Natural Language Conversation Method for Intelligent NPC Implementation in Games)

  • 우영운;박성대;박충식
    • 한국정보통신학회논문지
    • /
    • 제11권12호
    • /
    • pp.2406-2412
    • /
    • 2007
  • 최근에 인공지능기법을 적용한 자연어 처리 프로그램을 개발하기 위한 연구가 많이 진행되고 있으나 아직까지는 자연어 형태소 분석 등에 대부분 많은 노력을 기울이고 있으며 형태소 분석 결과를 활용하기 위한 기법에 대한 연구가 부족한 실정이다. 본 논문에서는 자연어의 형태소 분석 결과와 규칙 추론 기법을 활용하여 게임에서 사용되는 NPC(Non-Player Character)가 사용자와 자연어 문장으로 대화를 가능하게 하는 자연어 대화 프로그램을 개발하였다. 이를 위하여 기존에 개발되어 있는 규칙 추론 엔진인 NEO를 이용하여 자연어 대화 처리에 적합한 규칙의 표현과 구현 기법을 제안하였다. 실험을 위하여 다이어트에 대한 상담을 해 주는 NPC를 가상으로 설정하여 다이어트에 관련된 지식을 규칙과 사실들로 생성하였으며 다이어트와 관련된 보편적인 문장들로 프로그램을 수행한 결과 자연스러운 대화 내용이 생성됨을 알 수 있었다.

의존 구문 분석을 활용한 자연어 추론 (Natural Language Inference using Dependency Parsing)

  • 김슬기;김홍진;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.189-194
    • /
    • 2021
  • 자연어 추론은 두 문장 사이의 의미 관계를 분류하는 작업이다. 본 논문에서 제안하는 의미 추론 방법은 의존 구문 분석을 사용하여 동일한 구문 정보나 기능 정보를 가진 두 개의 (피지배소, 지배소) 어절 쌍에서 하나의 어절이 겹칠 때 두 피지배소를 하나의 청크로 만들어주고 청크 기준으로 만들어진 의존 구문 분석을 사용하여 자연어 추론 작업을 수행하는 방법을 의미한다. 이러한 의미 추론 방법을 통해 만들어진 청크와 구문 구조 정보를 Biaffine Attention을 사용하여 한 문장에 대한 청크 단위의 구문 구조 정보를 반영하고 구문 구조 정보가 반영된 두 문장을 Bilinear을 통해 관계를 예측하는 시스템을 제안한다. 실험 결과 정확도 90.78%로 가장 높은 성능을 보였다.

  • PDF

자연어 질의 분석과 검색어 확장에 기반한 웹 정보 검색 (Web Information Retrieval based on Natural Language Query Analysis and Keyword Expansion)

  • 윤성희;장혜진
    • 정보관리학회지
    • /
    • 제21권2호
    • /
    • pp.235-248
    • /
    • 2004
  • 웹 문서 정색을 위해 키워드와 불리언 연산식을 사용하는 것에 비해 자연어 질의 문장을 입력하는 방법은 검색 시스템 사용자에게 훨씬 이상적인 인터페이스이다. 본 논문은 사용자가 입력하는 자연어 질의 문장을 구문 분석하고 그 구문 구조에 기반하여 검색어를 확장하는 다중 검색 기법을 제안한다. 구문 트리를 순회하여 구조적으로 연관된 복합 명사를 조합하거나 분할하는 과정을 거치고, 이형 표기 및 축약 표기 용어들에 대해 확장 다중 검색함으로써 웹 정보 검색 시스템의 재현율과 정확도를 높일 수 있다.

진화연산을 이용한 자연어 파싱 (Natural Language Parsing through Evolutionary Computation)

  • 김동민;박성배;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.419-421
    • /
    • 2003
  • 본 논문에서는 진화 연산 기법을 이용한 자연어 구운 분석 기법을 제시한다 기존의 확률 문맥 무관문법(PCFG)에 관한 연구는 차트 파싱 방법을 구문 분석을 위한 기법으로 가정하고 있다. 하지만, 차트 파싱은 문장의 길이가 늘어날수록 복잡도가 크게 증가하는 문제를 안고 있다. 따라서, 차트 파서의 대안으로서 진화 연산 기법을 사용하여 이 문제를 해결하였다. 진화 연산의 적합도 함수로는 생성된 파스트리의 확률을 사용하였다. 작은 규모의 자연어 문제에 적용한 결과, 진화 연산이 파싱 문제를 성공적으로 해결할 수 있음을 확인할 수 있었다.

  • PDF

구문 분석에 기반한 자연어 질의로부터의 불리언 질의 생성 (Boolean Formulation of Korean Natural Language Queries Using Syntactic Analysis)

  • 박미화;원형석;이원일;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1998년도 제10회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.73-80
    • /
    • 1998
  • 본 연구는 자연어 질의의 형태 및 구문 정보를 바탕으로 불리언 질의를 생성하는데 그 목적을 둔다. 일반적으로 대부분의 상용정보검색시스템은 입력형식을 검색성능이 종은 불리언 형태로 하고 있으나, 일반 사용자는 자신이 원하는 정보를 불리언 형태로 표현하는데 익숙하지 않다. 그러므로 본 정보검색시스템은 자연어 질의를 기본 입력형태로 하여 사용자의 편의성을 높이고, 이 질의를 범주문법에 기반한 구문분석 결과에 의해 복합명사를 고려한 불리언 형태로 변환하여 검색을 수행함으로써 시스템의 검색 성능의 향상을 도모하였다. 정보검색 실험용 데이터 모음인 KTSET2.0으로 실험한 결과 본 논문에서 제안한 자연어 질의로부터 자동 생성된 불리언 질의의 검객성능이 KTSET2.0에서 제공하는 수동으로 추출한 불리언 질의보다 8% 더 우수한 성능을 보였고, 기존 자연어질의 시스템이 수용해온 방법인 형태소 분석을 거쳐 불용어를 제거한 후 Vector 모델을 적용하여 검색을 수행한 경우보다는 23% 더 나은 성능을 보였다.

  • PDF

한글 토크나이징 라이브러리 모듈 분석 (Analysis of the Korean Tokenizing Library Module)

  • 이재경;서진범;조영복
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.78-80
    • /
    • 2021
  • 현재 자연어 처리(NLP)에 대한 연구는 급속히 발전하고 있다. 자연어 처리는 인간이 일상생활에서 사용하는 언어의 의미를 분석하여 컴퓨터가 처리할 수 있도록 하는 기술로 음성인식, 맞춤법 검사, 텍스트 분류 등 여러 분야에 사용하고 있다. 현재 가장 많이 사용되는 자연어처리 라이브러리는 영어를 기준으로 한 NLTK로 한글처리에 단점을 가지고 있다. 따라서 본 논문에서는 한글 토크나이징(Tokenizing) 라이브러리인 KonLPy와 Soynlp를 소개 후 형태소 분석 및 처리 기법을 분석하고, KonLPy의 단점을 보완한 Soynlp와의 모듈을 비교·분석하여 향후 의료분야에 적합한 자연어 처리 모델로 활용하고자 한다.

  • PDF

Word2Vec 모델을 활용한 한국어 문장 생성 (Generating Korean Sentences Using Word2Vec)

  • 남현규;이영석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.209-212
    • /
    • 2017
  • 고도화된 머신러닝과 딥러닝 기술은 영상처리, 자연어처리 등의 분야에서 많은 문제를 해결하고 있다. 특히 사용자가 입력한 문장을 분석하고 그에 따른 문장을 생성하는 자연어처리 기술은 기계 번역, 자동 요약, 자동 오류 수정 등에 널리 이용되고 있다. 딥러닝 기반의 자연어처리 기술은 학습을 위해 여러 계층의 신경망을 구성하여 단어 간 의존 관계와 문장 구조를 학습한다. 그러나 학습 과정에서의 계산양이 방대하여 모델을 구성하는데 시간과 비용이 많이 필요하다. 그러나 Word2Vec 모델은 신경망과 유사하게 학습하면서도 선형 구조를 가지고 있어 딥러닝 기반 자연어처리 기술에 비해 적은 시간 복잡도로 고차원의 단어 벡터를 계산할 수 있다. 따라서 본 논문에서는 Word2Vec 모델을 활용하여 한국어 문장을 생성하는 방법을 제시하였다. 본 논문에서는 지정된 문장 템플릿에 유사도가 높은 각 단어들을 적용하여 문장을 구성하는 Word2Vec 모델을 설계하였고, 서로 다른 학습 데이터로부터 생성된 문장을 평가하고 제안한 모델의 활용 방안을 제시하였다.

  • PDF

Word2Vec 모델을 활용한 한국어 문장 생성 (Generating Korean Sentences Using Word2Vec)

  • 남현규;이영석
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.209-212
    • /
    • 2017
  • 고도화된 머신러닝과 딥러닝 기술은 영상처리, 자연어처리 등의 분야에서 많은 문제를 해결하고 있다. 특히 사용자가 입력한 문장을 분석하고 그에 따른 문장을 생성하는 자연어처리 기술은 기계 번역, 자동 요약, 자동 오류 수정 등에 널리 이용되고 있다. 딥러닝 기반의 자연어처리 기술은 학습을 위해 여러 계층의 신경망을 구성하여 단어 간 의존 관계와 문장 구조를 학습한다. 그러나 학습 과정에서의 계산양이 방대하여 모델을 구성하는데 시간과 비용이 많이 필요하다. 그러나 Word2Vec 모델은 신경망과 유사하게 학습하면서도 선형 구조를 가지고 있어 딥러닝 기반 자연어처리 기술에 비해 적은 시간 복잡도로 고차원의 단어 벡터를 계산할 수 있다. 따라서 본 논문에서는 Word2Vec 모델을 활용하여 한국어 문장을 생성하는 방법을 제시하였다. 본 논문에서는 지정된 문장 템플릿에 유사도가 높은 각 단어들을 적용하여 문장을 구성하는 Word2Vec 모델을 설계하였고, 서로 다른 학습 데이터로부터 생성된 문장을 평가하고 제안한 모델의 활용 방안을 제시하였다.

  • PDF

자연어 요구사항의 상태차트 모델링 (Modeling Requirements in Natural Language with Statecharts)

  • 김진현;김창진;심재환;박승현;최진영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (C)
    • /
    • pp.366-370
    • /
    • 2006
  • 정형명세는 자연어의 모호함을 없는 명료한 시스템 설계를 가능하게 한다. 상태차트와 같은 정형명세 된 요구사항은 시뮬레이션이나 정형검증을 통해 요구사항을 실행하여 볼 수 있으며, 더 나아가 여러 가지 특성을 정형검증과 같은 검증 기법으로 검증 할 수 있다. 하지만 자연어 요구사항을 상태차트로 변환하여 다양한 요구사항의 특성을 기술하기 위해서는 상당한 노력과 경험이 필요로 하다. 본 논문에서는 자연어 요구사항을 상태차트로 직접 변환하는 기법을 제안한다. 이를 위해 본 논문에서는 기능적인 요구 사항의 자연어를 분석하고, 또한 소프트웨어 요구사항 기술에 적절하도록 상태차트 문법의 의미를 제안한다.

  • PDF

확률적 차트 파싱에 기반 한 한국어 의존 구조 분석기 (Korean Dependency Structure Analyzer based on Probabilistic Chart Parsing)

  • 은지현;정민우;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2005년도 제17회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.105-111
    • /
    • 2005
  • 정형적인 프로그래밍 언어에서는 언어를 기계적으로 해석하기 위해 입력의 구조적인 형태를 구축하는 파싱이 필수적인 과정으로 여겨진다. 기계에 기반 해서 개발된 프로그래밍 언어와 달리, 인간의 자유로운 의사소통을 위해 형성된 자연어는 특유의 다양성으로 인해 어휘, 구문, 의미 분석이 매우 어렵다. 반대로 자연어 구조 분석이 성공적으로 이루어지면 응용 시스템의 성능 향상에 상당한 기여를 할 것이라고 여겨지고, 이로 인해 끊임없이 자연어 처리, 특히 구문 분석에 많은 연구가 이루어지고 있다. 본 논문에서는 파싱에 사용되는 문법 전체를 말뭉치로부터 자동 구축하여 영역별 이식성 및 문법의 효율성을 도모했다. 또한 확률적 차트 파싱 기법과 immediate-head 파싱 모델을 적용하여 기존 파싱 시스템의 성능 향상을 시도했다. 세종 말뭉치를 이용한 파서의 성능은 각각 LP/LR 78.98%/79.55%로 나타났다.

  • PDF