• 제목/요약/키워드: 자연어이해

검색결과 178건 처리시간 0.029초

한국어 어휘 지식 베이스 구축 시스템 (Korean Lexical Knowledge Base Construction System)

  • 이해중;조정미;문준혁;서정연
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1999년도 제11회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.397-403
    • /
    • 1999
  • 어휘 지식은 자연어 처리에서 매우 중요한 요소이다. 그러나 대규모의 어휘 지식 베이스를 구축하는 것은 많은 시간과 비용을 필요로하는 일이다. 본 논문에서는 온라인 국어 사전을 이용하여 범용의 대규모 한국어 어휘 지식 베이스를 자동으로 구축하는 방법을 제안하고 실제로 시스템을 구현한다. 제안하는 방법론은 비교적 적은 비용으로 단시일내에 대규모의 어휘 지식 베이스를 구축하는 것을 가능하게 한다. 또한 지식 구축 과정이 자동화되어 만들어진 지식 베이스의 유지, 보수 및 확장이 용이하다. 구현된 시스템으로 구축한 어휘 지식 베이스는 기계번역에서의 대역어 선정이나 한국어 조사의 의미 분별 등 자연어 처리 과정에서 발생하는 각종 어휘 의미 모호성 해소에 응용될 수 있다.

  • PDF

Seq2SPARQL: 신경망 기계 번역을 사용한 지식 베이스 질의 언어 자동 생성 (Seq2SPARQL: Automatic Generation of Knowledge base Query Language using Neural Machine Translation)

  • 홍동균;심홍매;김광민
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.898-900
    • /
    • 2019
  • SPARQL(SPARQL Protocol and RDF Query Language)은 지식 베이스를 위한 표준 시맨틱 질의 언어이다. 최근 인공지능 분야에서 지식 베이스는 질의 응답 시스템, 시맨틱 검색 등 그 활용성이 커지고 있다. 그러나 SPARQL 과 같은 질의 언어를 사용하기 위해서는 질의 언어의 문법을 이해하기 때문에, 일반 사용자의 경우에는 그 활용성이 제한될 수밖에 없다. 이에 본 논문은 신경망 기반 기계 번역 기술을 활용하여 자연어 질의로부터 SPARQL 을 생성하는 방법을 제안한다. 우리는 제안하는 방법을 대규모 공개 지식 베이스인 Wikidata 를 사용해 검증하였다. 우리는 실험에서 사용할 Wikidata 에 존재하는 영화 지식을 묻는 자연어 질의-SPARQL 질의 쌍 20,000 건을 생성하였고, 여러 sequence-to-sequence 모델을 비교한 실험에서 합성곱 신경망 기반의 모델이 BLEU 96.8%의 가장 좋은 결과를 얻음을 보였다.

Prompt를 활용한 페르소나 대화 생성 연구 (A Study on Prompt-based Persona Dialogue Generation)

  • 장윤나;양기수;문현석;서재형;임정우;손준영;박찬준;박기남;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.77-81
    • /
    • 2022
  • 최근 사전학습 언어모델에 내재된 지식을 최대한으로 활용하고자 태스크에 대한 설명을 입력으로 주는 manual prompt tuning 방법과 자연어 대신 학습가능한 파라미터로 태스크에 대한 이해를 돕는 soft prompt tuning 방법론이 자연어처리 분야에서 활발히 연구가 진행되고 있다. 이에 본 연구에서는 페르소나 대화 생성 태스크에서 encoder-decoder 구조 기반의 사전학습 언어모델 BART를 활용하여 manual prompt tuning 및 soft prompt tuning 방법을 고안하고, 파인튜닝과의 성능을 비교한다. 전체 학습 데이터에 대한 실험 뿐 아니라, few-shot 세팅에서의 성능을 확인한다.

  • PDF

Word2Vec, GloVe 및 RoBERTa 등의 모델을 활용한 한국어 문장 임베딩 성능 비교 연구 (A Comparative Study on the Performance of Korean Sentence Embedding)

  • 석주리;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.444-449
    • /
    • 2021
  • 자연어처리에서 임베딩이란 사람의 언어를 컴퓨터가 이해할 수 있는 벡터로 변환한 것으로 자연어처리의 필수 요소 중 하나이다. 본 논문에서는 단어 기반 임베딩인 Word2Vec, GloVe, fastText와 문장 기반 임베딩 기법인 BERT와 M-USE, RoBERTa를 사용하여 한국어 문장 임베딩을 만들어 NSMC, KorNLI, KorSTS 세 가지 태스크에 대한 성능을 확인해보았다. 그 결과 태스크에 따라서 적합한 한국어 문장 임베딩 기법이 달라지며, 태스크에 따라서는 BERT의 평균 임베딩보다 GloVe의 평균 임베딩과 같은 단어 기반의 임베딩이 좋은 성능을 보일 수 있음을 확인할 수 있었다.

  • PDF

감성 분류를 위한 워드 임베딩 성능 비교 (Performance Comparison of Word Embeddings for Sentiment Classification)

  • 윤혜진;구자환;김응모
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.760-763
    • /
    • 2021
  • 텍스트를 자연어 처리를 위한 모델에 적용할 수 있게 언어적인 특성을 반영해서 단어를 수치화하는 방법 중 단어를 벡터로 표현하여 나타내는 워드 임베딩은 컴퓨터가 인간의 언어를 이해하고 분석 가능한 언어 모델의 필수 요소가 되었다. Word2vec 등 다양한 워드 임베딩 기법이 제안되었고 자연어를 처리할 때에 감성 분류는 중요한 요소이지만 다양한 임베딩 기법에 따른 감성 분류 모델에 대한 성능 비교 연구는 여전히 부족한 실정이다. 본 논문에서는 Emotion-stimulus 데이터를 활용하여 7가지의 감성과 2가지의 감성을 5가지의 임베딩 기법과 3종류의 분류 모델로 감성 분류 학습을 진행하였다. 감성 분류를 위해 Logistic Regression, Decision Tree, Random Forest 모델 등과 같은 보편적으로 많이 사용하는 머신러닝 분류 모델을 사용하였으며, 각각의 결과를 훈련 정확도와 테스트 정확도로 비교하였다. 실험 결과, 7가지 감성 분류 및 2가지 감성 분류 모두 사전훈련된 Word2vec가 대체적으로 우수한 정확도 성능을 보였다.

과학기술데이터를 위한 자연어처리 기술 동향 (Natural Language Processing Trends For Science & Technology Data)

  • 정현지;장광선
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.666-669
    • /
    • 2021
  • 연구수행과정에서 발생하는 논문, 특허, 연구보고서 등의 과학기술데이터는 다양한 과학기술지식을 포함한다. 연구자들의 효과적인 연구를 지원하기 위해서는 과학기술데이터 분석을 통한 지식 발견이 필수적이다. 과학기술데이터는 일반 텍스트와는 다르게 다수의 전문용어를 포함하고 있으며, 고유의 양식이 정해져 있고, 텍스트 길이가 대체로 길다는 특징이 있다. 본 고에서는 이러한 과학기술데이터만의 고유한 특징을 반영한 인공지능 기반 자연어처리 기술들을 소개함으로써 과학기술데이터 분석에 대한 이해를 돕고자 한다.

추상적 텍스트 요약 기반의 메소드 이름 제안 모델 (A Method Name Suggestion Model based on Abstractive Text Summarization)

  • 주한새
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.137-138
    • /
    • 2022
  • 소스 코드 식별자의 이름을 잘 정하는 것은 소프트웨어 엔지니어링에서 중요한 문제로 다루어지고 있다. 프로그램 엔티티의 의미있고 간결한 이름은 코드 이해도에 중요한 역할을 하며, 소프트웨어 유지보수 관리 비용을 줄이는 데에 큰 효과가 있다. 이러한 코드 식별자 중 평균적으로 가장 복잡한 식별자는 '메소드 이름'으로 알려져 있다. 본 논문에서는 메소드 내용과 일관성 있는 적절한 메소드 이름 생성을 자연어 처리 태스크 중 하나인 '추상적 텍스트 요약'으로 치환하여 수행하는 트랜스포머 기반의 인코더-디코더 모델을 제안한다. 제안하는 모델은 Github 오픈소스를 크롤링한 Java 데이터셋에서 기존 최신 메소드 이름 생성 모델보다 약 50% 이상의 성능향상을 보였다. 이를 통해 적절한 메소드 작명에 필요한 비용 절감 달성 및 다양한 소스 코드 관련 태스크를 언어 모델의 성능을 활용하여 해결하는 데 도움이 될 것으로 기대된다.

  • PDF

영어 교육을 위한 거대 언어 모델 활용 말뭉치 확장 프레임워크 (Data Augmentation using Large Language Model for English Education)

  • 정진우;정상근
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.698-703
    • /
    • 2023
  • 최근 ChatGPT와 같은 사전학습 생성모델은 자연어 이해 (natural language understanding)에서 좋은 성능을 보이고 있다. 또한 코드 작업을 도와주고 대학수학능력시험, 중고등학교 수준의 문제를 풀거나 도와주는 다양한 분야에서 활용되고 있다. 본 논문은 사전학습 생성모델을 이용하여 영어 교육을 위해 말뭉치를 확장하는 프레임 워크를 제시한다. 이를 위해 ChatGPT를 사용해 말뭉치를 확장 한 후 의미 유사도, 상황 유사도, 문장 교육 난이도를 사용해 생성된 문장의 교육적 효과를 검증한다.

  • PDF

제로샷 분류를 활용한 성별 편향 완화 성별 예측 방법 (Gender Bias Mitigation in Gender Prediction Using Zero-shot Classification)

  • 김연희;최병주;김종길
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.509-512
    • /
    • 2024
  • 자연어 처리 기술은 인간 언어의 이해와 처리에서 큰 진전을 이루었으나, 학습 데이터에 내재한 성별 편향이 모델의 예측 정확도와 신뢰성을 저하하는 주요한 문제로 남아 있다. 특히 성별 예측에서 이러한 편향은 더욱 두드러진다. 제로샷 분류 기법은 기존에 학습되지 않은 새로운 클래스를 효과적으로 예측할 수 있는 기술로, 학습 데이터의 제한적인 의존성을 극복하고 다양한 언어 및 데이터 제한 상황에서도 효율적으로 작동한다. 본 논문은 성별 클래스 확장과 데이터 구조 개선을 통해 성별 편향을 최소화한 새로운 데이터셋을 구축하고, 이를 제로샷 분류 기법을 통해 학습시켜 성별 편향성이 완화된 새로운 성별 예측 모델을 제안한다. 이 연구는 다양한 언어로 구성된 자연어 데이터를 추가 학습하여 성별 예측에 최적화된 모델을 개발하고, 제한된 데이터 환경에서도 모델의 유연성과 범용성을 입증한다.

BERT를 이용한 한국어 특허상담 기계독해 (Korean Machine Reading Comprehension for Patent Consultation Using BERT)

  • 민재옥;박진우;조유정;이봉건
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권4호
    • /
    • pp.145-152
    • /
    • 2020
  • 기계독해는(Machine reading comprehension) 사용자 질의와 관련된 문서를 기계가 이해한 후 정답을 추론하는 인공지능 자연어처리 태스크를 말하며, 이러한 기계독해는 챗봇과 같은 자동상담 서비스에 활용될 수 있다. 최근 자연어처리 분야에서 가장 높은 성능을 보이고 있는 BERT 언어모델은 대용량의 데이터를 pre-training 한 후에 각 자연어처리 태스크에 대해 fine-tuning하여 학습된 모델로 추론함으로써 문제를 해결하는 방식이다. 본 논문에서는 BERT기반 특허상담 기계독해 태스크를 위해 특허상담 데이터 셋을 구축하고 그 구축 방법을 소개하며, patent 코퍼스를 pre-training한 Patent-BERT 모델과 특허상담 모델학습에 적합한 언어처리 알고리즘을 추가함으로써 특허상담 기계독해 태스크의 성능을 향상시킬 수 있는 방안을 제안한다. 본 논문에서 제안한 방법을 사용하여 특허상담 질의에 대한 정답 결정에서 성능이 향상됨을 보였다.