• Title/Summary/Keyword: 자세 정합

Search Result 76, Processing Time 0.027 seconds

Evaluation of the usefulness of prone position for reducing the image distortion due to respiration in PET/CT (PET/CT 검사 시 호흡에 따른 영상 왜곡 감소를 위한 엎드린 자세의 유용성 평가)

  • Lee, Han Wool;Kim, Jung Yul;Choi, Yong Hoon;Lim, Han Sang;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.59-63
    • /
    • 2019
  • Purpose The motion due to respiration of patients undergoing PET/CT is a cause of artifacts in image and registration error between PET and CT images. The degree of displacement and distortion for tumor, which affects the measurement of Standard Uptake Value (SUV) and lesion volume, is especially higher for tumors that is small or located at the base of lungs. The purpose of this study was to evaluate the usefulness of prone position in the correction of image distortion due to respiration of patients in PET/CT. Materials and Methods The imaging equipment used in this study was PET/CT Discovery 600 (GE Healthcare, MI, USA). 20 patients whose lesions were identified in the middle and lower lungs from May to August 2018 were enrolled in this study. After acquiring whole body image in the supine position, additional images of the lesion area were obtained in the prone position with the same conditions. SUVmax, SUVmean, and volume of the lesion were measured for each image, and the displacement of the lesion on PET and CT images were measured, compared, and analyzed. Results The SUVmax, SUVmean, and volume, and displacement of the lesion were $4.72{\pm}2.04$, $3.10{\pm}1.38$, $4.68{\pm}3.20$, and $4.64{\pm}1.88$, respectively for image acquired in the supine position and $5.89{\pm}2.42$, $3.97{\pm}1.65$, $2.13{\pm}1.09$, and $2.24{\pm}0.84$, respectively for image acquired in the prone position, indicating that, for all the lesions imaged, SUVmax and SUVmean were higher and volume and displacement were smaller in the images acquired in prone position compared to those acquired in supine one(p<0.05). Conclusion These results showed that the prone position PET/CT imaging improves the quality of the image by increasing the SUV of the lesion and reducing the respiratory artifacts caused by registration error between PET and CT images. It is considered that the PET/CT imaging in the prone position is helpful in the diagnosis of the disease as an economical and efficient methods that correct registration error for the lesions in basal lung and reduce artifacts.

Development of the Location Mapping Content Services Platform (로케이션 매핑 영상 콘텐츠 서비스 플랫폼 개발)

  • Lee, Seong-Ho;Chang, Yoon-Seop;Ryu, Keun Ho
    • Journal of Digital Contents Society
    • /
    • v.19 no.8
    • /
    • pp.1555-1564
    • /
    • 2018
  • In recent years, In recent years, research on geo-tagged image contents has defined a view frustum based on filming location and direction data and has studied indexes and various query search techniques for efficient search. The existing view frustum model has a limit of using the static visible distance and provides a simple service that displays the huge image contents on the digital map. We show a method to acquire filming location and attitude data and propose a view frustum model that can change the visible distance using geospatial object data. In addition, we describe the augmented reality service that combines the image matching technique so that it can be mapped in the scene where the image contents are captured.

Investigation of Sensor Models for Precise Geolocation of GOES-9 Images (GOES-9 영상의 정밀기하보정을 위한 여러 센서모델 분석)

  • Hur, Dong-Seok;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.285-294
    • /
    • 2006
  • A numerical formula that presents relationship between a point of a satellite image and its ground position is called a sensor model. For precise geolocation of satellite images, we need an error-free sensor model. However, the sensor model based on GOES ephemeris data has some error, in particular after Image Motion Compensation (IMC) mechanism has been turned off. To solve this problem, we investigated three sensor models: collinearity model, direct linear transform (DLT) model and orbit-based model. We applied matching between GOES images and global coastline database and used successful results as control points. With control points we improved the initial image geolocation accuracy using the three models. We compared results from three sensor models. As a result, we showed that the orbit-based model is a suitable sensor model for precise geolocation of GOES-9 Images.

Matching and Geometric Correction of Multi-Resolution Satellite SAR Images Using SURF Technique (SURF 기법을 활용한 위성 SAR 다중해상도 영상의 정합 및 기하보정)

  • Kim, Ah-Leum;Song, Jung-Hwan;Kang, Seo-Li;Lee, Woo-Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.431-444
    • /
    • 2014
  • As applications of spaceborne SAR imagery are extended, there are increased demands for accurate registrations for better understanding and fusion of radar images. It becomes common to adopt multi-resolution SAR images to apply for wide area reconnaissance. Geometric correction of the SAR images can be performed by using satellite orbit and attitude information. However, the inherent errors of the SAR sensor's attitude and ground geographical data tend to cause geometric errors in the produced SAR image. These errors should be corrected when the SAR images are applied for multi-temporal analysis, change detection applications and image fusion with other sensor images. The undesirable ground registration errors can be corrected with respect to the true ground control points in order to produce complete SAR products. Speeded Up Robust Feature (SURF) technique is an efficient algorithm to extract ground control points from images but is considered to be inappropriate to apply to SAR images due to high speckle noises. In this paper, an attempt is made to apply SURF algorithm to SAR images for image registration and fusion. Matched points are extracted with respect to the varying parameters of Hessian and SURF matching thresholds, and the performance is analyzed by measuring the imaging matching accuracies. A number of performance measures concerning image registration are suggested to validate the use of SURF for spaceborne SAR images. Various simulations methodologies are suggested the validate the use of SURF for the geometric correction and image registrations and it is shown that a good choice of input parameters to the SURF algorithm should be made to apply for the spaceborne SAR images of moderate resolutions.

Development of robot calibration method based on 3D laser scanning system for Off-Line Programming (오프라인 프로그래밍을 위한 3차원 레이저 스캐닝 시스템 기반의 로봇 캘리브레이션 방법 개발)

  • Kim, Hyun-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.16-22
    • /
    • 2019
  • Off-line programming and robot calibration through simulation are essential when setting up a robot in a robot automation production line. In this study, we developed a new robot calibration method to match the CAD data of the production line with the measurement data on the site using 3D scanner. The proposed method calibrates the robot using 3D point cloud data through Iterative Closest Point algorithm. Registration is performed in three steps. First, vertices connected by three planes are extracted from CAD data as feature points for registration. Three planes are reconstructed from the scan point data located around the extracted feature points to generate corresponding feature points. Finally, the transformation matrix is calculated by minimizing the distance between the feature points extracted through the ICP algorithm. As a result of applying the software to the automobile welding robot installation, the proposed method can calibrate the required accuracy to within 1.5mm and effectively shorten the set-up time, which took 5 hours per robot unit, to within 40 minutes. By using the developed system, it is possible to shorten the OLP working time of the car body assembly line, shorten the precision teaching time of the robot, improve the quality of the produced product and minimize the defect rate.

A Study on Pipe Model Registration for Augmented Reality Based O&M Environment Improving (증강현실 기반의 O&M 환경 개선을 위한 배관 모델 정합에 관한 연구)

  • Lee, Won-Hyuk;Lee, Kyung-Ho;Lee, Jae-Joon;Nam, Byeong-Wook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.191-197
    • /
    • 2019
  • As the shipbuilding and offshore plant industries grow larger and more complex, their maintenance and inspection systems become more important. Recently, maintenance and inspection systems based on augmented reality have been attracting much attention for improving worker's understanding of work and efficiency, but it is often difficult to work with because accurate matching between the augmented model and reality information is not. To solve this problem, marker based AR technology is used to attach a specific image to the model. However, the markers get damaged due to the characteristic of the shipbuilding and offshore plant industry, and the camera needs to be able to detect the entire marker clearly, and thus requires sufficient space to exist between the operator. In order to overcome the limitations of the existing AR system, in this study, a markerless AR was adopted to accurately recognize the actual model of the pipe system that occupies the most processes in the shipbuilding and offshore plant industries. The matching methodology. Through this system, it is expected that the twist phenomenon of the augmented model according to the attitude of the real worker and the limited environment can be improved.

Error Correction of Interested Points Tracking for Improving Registration Accuracy of Aerial Image Sequences (항공연속영상 등록 정확도 향상을 위한 특징점추적 오류검정)

  • Sukhee, Ochirbat;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.93-97
    • /
    • 2010
  • This paper presents the improved KLT(Kanade-Lucas-Tomasi) of registration of Image sequence captured by camera mounted on unmanned helicopter assuming without camera attitude information. It consists of following procedures for the proposed image registration. The initial interested points are detected by characteristic curve matching via dynamic programming which has been used for detecting and tracking corner points thorough image sequence. Outliers of tracked points are then removed by using Random Sample And Consensus(RANSAC) robust estimation and all remained corner points are classified as inliers by homography algorithm. The rectified images are then resampled by bilinear interpolation. Experiment shows that our method can make the suitable registration of image sequence with large motion.

Face Recognition: A Survey (얼굴인식 기술동향)

  • Mun, Hyeon-Jun
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02c
    • /
    • pp.172-177
    • /
    • 2008
  • Biometrics is essential for person identification because of its uniqueness from each individuals. Face recognition technology has advantage over other biometrics because of its convenience and non-intrusive characteristics. In this paper, we will present a overview of face recognition technology including face detection, feature extraction, and face recognition system. For face detection, we will describe template based method and face component based approach. PCA and LDA approach will be discussed for feature extraction, and nearest neighbor classifiers -will be covered for matching. Large database and the standardized performance evaluation methodology is essential in order to support state-of-the-art face recognition system. Also, 3D based face recognition technology is the key solution for the pose, lighting and expression variations in many applications.

  • PDF

Study on Using Teeth Images in Biometrics (생체 인식에서 치아 영상의 이용에 관한 연구)

  • Kim, Tae-Woo;Cho, Tae-Kyung;Lee, Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.200-205
    • /
    • 2006
  • Abstract This paper presents a personal identification method based on BMME and LDA for images acquired at anterior and posterior occlusion expression of teeth. The method consists of teeth region extraction, BMME, and pattern recognition forthe images acquired at the anterior and posterior occlusion state of teeth. Two occlusions can provide consistent teeth appearance in images and BMME can reduce matching error in pattern recognition. Using teeth images can be beneficial in recognition because teeth, rigid objects, cannot be deformed at the moment of image acquisition. In the experiments, the algorithm was successful in teeth recognition for personal identification for 20 people, which encouraged our method to be able to contribute to multi-modal authentication systems.

  • PDF

Dynamic 3D Worker Pose Registration for Safety Monitoring in Manufacturing Environment based on Multi-domain Vision System (다중 도메인 비전 시스템 기반 제조 환경 안전 모니터링을 위한 동적 3D 작업자 자세 정합 기법)

  • Ji Dong Choi;Min Young Kim;Byeong Hak Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.6
    • /
    • pp.303-310
    • /
    • 2023
  • A single vision system limits the ability to accurately understand the spatial constraints and interactions between robots and dynamic workers caused by gantry robots and collaborative robots during production manufacturing. In this paper, we propose a 3D pose registration method for dynamic workers based on a multi-domain vision system for safety monitoring in manufacturing environments. This method uses OpenPose, a deep learning-based posture estimation model, to estimate the worker's dynamic two-dimensional posture in real-time and reconstruct it into three-dimensional coordinates. The 3D coordinates of the reconstructed multi-domain vision system were aligned using the ICP algorithm and then registered to a single 3D coordinate system. The proposed method showed effective performance in a manufacturing process environment with an average registration error of 0.0664 m and an average frame rate of 14.597 per second.