• Title/Summary/Keyword: 자세오차

Search Result 363, Processing Time 0.021 seconds

A Study on Improvement of Roll Autopilot System (가로축 자동비행시스템 개선에 관한 연구)

  • Kim, Chong-Sup;Koh, Gi-Oak;Ji, Chang-Ho;Cho, In-Je;Lee, Dong-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.706-711
    • /
    • 2015
  • The fighter aircraft uses several different loading configurations for air-to-surface and air-to-air combat missions. To maintain wings-level flight with an asymmetric weapon configuration, a pilot controls a roll trim system. However, it is difficult to apply an accurate roll trim input for wings-level flight in the actual flight under disturbance. The inaccurate roll trim input degrades the performance of the roll autopilot system. In this paper, to solve this problem, an integrator was additionally designed in the command part of the roll autopilot system. The initial transient response was improved by scheduling the limiter to restrict the roll attitude error. As a result of the evaluation of the simulation for the designed flight control law, the roll attitude following performance was found to be improved in the autopilot system operation under the inaccurate roll trim condition.

AOCS On-orbit Calibration for High Agility Imaging LEO Satellite (고기동 영상촬영 저궤도 위성 자세제어계 궤도상 보정)

  • Yoon, Hyungjoo;Park, Keun Joo;Yim, Jo Ryeong;Choi, Hong-Taek;Seo, Doo Chun
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.80-86
    • /
    • 2012
  • A fast maneuvering LEO satellite producing high resolution images was developed by Korea Aerospace Research Institute and launched successfully. To achieve accurate pointing and stringent pointing stability, the attitude orbit control subsystem implements high performance star trackers and gyroscopes. In addition, series of on-orbit calibration need to be performed to compensate mainly misalignment errors due to launch shock and on-orbit thermal environment. In this paper, the on-orbit calibration approach is described with the performance enhancement result through flight data analysis.

Improvement of Attitude Determination Based on Specific Force Vector Matching (비력벡터매칭 기법을 이용한 자세결정 알고리즘의 성능 향상)

  • Choe, Yeongkwon;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.106-113
    • /
    • 2017
  • Attitude determination algorithms for aircraft and land vehicles use earth gravitational vector and geomagnetic vector; hence, magnetometers and accelerometers are employed. In dynamic situation, the output from accelerometers includes not only gravitational vector but also motional acceleration, thus it is hard to determine accurate attitude. The acceleration compensation method treated in this paper solves the problem to compensate the specific force vector for motional acceleration calculated by a GPS receiver. This paper analyzed the error from the corrected vector regarded as a constant by conventional acceleration compensation method, and improve the error by rederivation from measurements. The analyzed error factors and improvements by the proposed algorithm are verified by computer simulations.

Determinate Real-Time Position and Attitude using GPS/INS/AT for Real-time Aerial Monitoring System (실시간 공중 자료획득 시스템을 위한 GPS/INS/AT를 이용한 실시간 위치/자세 결정)

  • Han, Joong-Hee;Kwon, Jay-Hyoun;Lee, Im-Pyeong;Choi, Kyoung-Ah
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.531-537
    • /
    • 2010
  • Real-time Aerial Monitoring System performs the rapid mapping in an emergency situation so that the geoinformation could be constructed in near real time. In this system, the position and attitude information from GPS/INS integration algorithm is used to perform the aerial triangulation(AT) without GCPs. Therefore, if we obtain Exterior Orientation(EO) estimates from AT sequentially, EO are used as the measurements in the Kalman filter. In this study, we simulate the GPS/IMS/Image data for an UAV-based aerial monitoring system and compare the GPS/INS/AT with and without from AT. Comparative analysis showed that result from the GPS/INS/AT with EO update is more accurate than without the update. However, when the vehicle turns, the position error significantly increases which need more analysis in the future.

Error Assessment of Attitude Determination Using Wireless Internet-Based DGPS (무선인터넷기반의 DGPS를 이용한 동체의 자세결정 성능평가)

  • Lee Hong Shik;Lim Sam Sung;Park Jun Ku
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.101-108
    • /
    • 2005
  • Inertial Navigation System has been used extensively to determine the position, velocity and attitude of the body. An INS is very expensive, however, heavy, power intensive, requires long setting times and the accuracy of the system is degraded as time passed due to the accumulated error. Global Positioning System(GPS) receivers can compensate for the Inertial Navigation System with the ability to provide both absolute position and attitude. This study describes a method to improve both the accuracy of a body positioning and the precision of an attitude determination using GPS antenna array. Existing attitude determination methods using low-cost GPS receivers focused on the relative vectors between the master and the slave antennas. Then the positioning of the master antenna is determined in meter-level because the single point positioning with pseudorange measurements is used. To obtain a better positioning accuracy of the body in this research, a wireless internet is used as an alternative data link for the real-time differential corrections and dual-frequency GPS receivers which is expected to be inexpensive was used. The numerical results show that this system has the centimeter level accuracy in positioning and the degree level accuracy in attitude.

Attitude Estimation of Agricultural Unmanned Helicopters using Inertial Measurement Sensors (관성센서를 이용한 농용 무인 헬리콥터의 자세 추정)

  • Bae, Yeonghwan;Oh, Minseok;Koo, Young Mo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.159-163
    • /
    • 2014
  • Agricultural unmanned helicopters have become a new paradigm for aerial application. Yet, such agricultural helicopters require easy and affordable attitude control systems. Therefore, this study presents an affordable attitude measurement system using a DCM (direction cosine matrix) algorithm that would be applied to agricultural unmanned helicopters. An IMU using a low-cost MEMS and an algorithm to estimate the attitude of the helicopter were applied in a gimbals structure to evaluate the accuracy of the attitude measurements. The estimation errors in the attitude were determined in comparison with the true angles determined by absolute position encoders. The DCM algorithm and sensors showed an accuracy of about 1.1% for the roll and pitch angle estimation. However, the accuracy of the yaw angle estimation at 3.7% was relatively larger. Such errors may be due to the magnetic field of the stepping motor and encoder system. Notwithstanding, since the intrinsic behavior of the agricultural helicopter remains steady, the determination of attitude would be reliable and practical.

The Position and Heading Estimation System of Mobile Robot Using the Extended Kalman Filter (확장칼만필터를 이용한 이동로봇의 위치와 자세 추정 시스템)

  • Jin, Kwang-Sik;Yun, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.683-686
    • /
    • 1999
  • 이동로봇은 주행성을 가지며 설정된 이동 경로에 따라 목적지까지 자율적으로 이동하기 위해서는 이동로봇의 실제 위치에 대한 정확한 정보가 확보되어야 한다. 정보확보를 위해서 보통 엔코더, 자이로센서, 비젼센서, 레이저 거리등의 센서를 주로 사용한다. 본 연구에서 주행중인 이동로봇의 위치는 상대센서인 엔코더를 통해 측정된 운동변화량과 출발점에서 이동로봇의 위치로부터 자기유도 주행방법에 의해 계산된다. 이들 상대센서는 이동로봇의 실제 이동에 따라 주행거리 및 주행 방향 변화를 항상 측정할 수 있으므로, 전체 주행구간에 걸쳐 이동로봇의 위치를 연속적으로 측정할 수 있다는 장점이 있으나, 상대센서 측정값에 발생된 오차가 위치 평가값이 연속적으로 누적되므로 실제 위치에 대한 오차가 발생하는 단점이 있다. 즉, 바닥의 미끄럼, 요철, 로봇의 요동(Vibration)등 큰 오차의 요인이 된다. 본 연구에서는 위치를 직접 추정하지 않고 엔코드에서 나온 위치오차, Heading 오차, 자체 엔코드오차 그리고, 자이로 오차와 지자기 센서 오차를 Extended Kalman Filter를 통해 추정하여 이 오차를 다시 위치 계산과 Heading에 되돌려 줌으로서 오차를 보정하는 방법을 제시한다.

  • PDF

Attitude Control of Surface Ship using fuzzy inference technique (퍼지추론 기법을 이용한 선체자세 제어)

  • 김희정;김용기
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.149-152
    • /
    • 2001
  • 선박이 해상에서 운항시, 선체는 파도에 의해 심하게 동요되기 때문에 승선감과 안전성이 저하된다. 따라서 선박의 안전항해, 쾌적한 승선감, 구조적인 안전 보장을 위한 선체제어를 위한 필요성이 증대되어 왔다. 기존의 PID 제어기법 등은 정상편차가 적어 과도응답의 문제점 및 오차누적의 문제점이 있고, 퍼지제어 기법은 최적화가 어렵다는 단점을 가진다. 본 논문에서는 퍼지추론 기법을 이용한 선체자세 제어기법으로 운동체에 관한 전문가의 지식과 경험을 바탕으로 퍼지집합과 퍼지규칙을 설정하고 설계된 퍼지 추론을 통해 현재의 운동상황을 판단함으로써 효과적인 최적화와 자세계산을 수행할 수 있다. 본 논문에서는 퍼지추론을 이용한 자세제어 알고리즘을 제안하고 실시간 시뮬레이션을 통하여 시험한다.

  • PDF

Transfer Alignment Using Velocity Matching/Parameter Tuning and Its Performance and Observability Analysis (속도정합 및 매개변수 조정을 사용한 전달정렬의 성능 및 가관측성 분석)

  • Yang, Cheol-Kwan;Park, Ki-Young;Kim, Hyoung-Min;Shim, Duk-Sun
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.5
    • /
    • pp.389-394
    • /
    • 2015
  • This paper considers the transfer alignment in the inertial navigation system which has lever-arm and the time delay in the velocity measurement. We suggest a method to improve the performance of the velocity matching. First, we analyze the estimation performance of the velocity matching through the tuning of the two covariance matrices of process noise and measurement noise. Next we provide some maneuvering conditions of the vehicles to improve the estimation performance using the observability analysis. The analysis results are verified using the computer simulations, which show that cruise movements do not provide the azimuth estimation of the vehicles, while east or north accelerating movement can provide.