• 제목/요약/키워드: 자산증가

검색결과 513건 처리시간 0.02초

네트워크 관점에 기반한 사회적 자본 및 실험실 창업팀 다양성이창업 성과에 미치는 영향: I-Corps program을 중심으로 (The Impact of Social Capital and Laboratory Startup Team Diversity on Startup Performance Based on a Network Perspective: Focusing on the I-Corps Program)

  • 이재호;손영우;한정화;이상명
    • 벤처창업연구
    • /
    • 제18권6호
    • /
    • pp.173-189
    • /
    • 2023
  • 혁신 기술 개발이 거듭되며 인공지능, 생명공학, 로봇, 항공우주, 전기차, 태양광 등의 신산업이 창출되며 거시적 경영환경이 급변하고 있다. 이러한 대규모 변화와 복잡성 증가로 인해 창업 전략 차원에서 기술이나 자산의 소유 그 자체보다는 자본이 관계의 중요성 증대로 활용되면서 새로운 가치 창출이 가능한 사회적 자본(Social Capital)의 효과에 주목할 필요가 있다. 사회적 자본은 1916년 Hanifan이 최초로 제안한 개념으로 개인 또는 사회적 구성원들 간의 상호 지속적이며 유기적 관계 또는 축적된 인간관계 네트워크에 잠재되거나 활용이 가능한 능력이나 자원의 전체적 총합을 일컫는다. 또한, 특출한 창업자 1인 보다는 다양한 배경과 특성 및 역량을 갖춘 창업팀 다양성이 각광을 받고 있다. 창업팀 다양성은 창업팀의 인구통계학적 요인이나 신념, 가치 등의 심층적 요소에 대한 다양성을 뜻한다. 거시적 환경 변화로 산업 혁신을 주도하고 국가의 핵심성장동력 창출 역할을 하는 기술창업 및 실험실창업의 중요성이 강조되고 있는데 본 연구에서는 '아이코어(I-Corps)' 프로그램에 주목하였다. 혁신군단을 의미하는 아이코어는 2011년 미연구재단(NSF)이 기업가 정신 및 연구 결과 사업화 장려를 위해 출범된 실험실 창업프로그램으로 교수와 연구원이 참여하는 창업팀 구성과 시장발견활동에 주안점을 두고 있다. 본 연구에서는 이런 특성을 감안하여 네트워크 관점의 사회적 자본과 창업팀 다양성이 아이코어 창업성과에 끼치는 영향을 실증적으로 검증하였다. 분석 결과 창업팀의 학력 다양성이 창업팀의 재무적 성과에 부(-)의 영향을, 성별 다양성과 사회적 자본의 인지적 차원이 창업팀의 재무적 성과에 정(+)의 영향을 끼쳤다. 본 연구는 아이코어 실험실 창업팀 다양성, 사회적 자본과 그 성과 해석에 대한 이론적, 실무적 시사점을 보다 유용하게 제공할 것으로 기대한다.

  • PDF

비트코인 가격 변화에 관한 실증분석: 소비자, 산업, 그리고 거시변수를 중심으로 (Empirical Analysis on Bitcoin Price Change by Consumer, Industry and Macro-Economy Variables)

  • 이준식;김건우;박도형
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.195-220
    • /
    • 2018
  • 본 연구는 비트코인 가격 변화량에 영향을 미치는 요인에 대한 실증 분석을 수행하였다. 기존 연구들은 암호화폐와 관련해 블록체인 시스템의 보안성, 암호화폐가 불러일으키는 경제적 파급효과 및 법적 시사점, 소비자 수용 및 사용 의도와 사회현상을 중심으로 이루어졌다. 그러나 암호화폐 가격 변화가 급등과 급락을 반복하면서 많은 사회적 문제를 야기했음에도 불구하고 암호화폐의 가격 변화에 영향을 미치는 요인에 대한 실증적 연구는 부족하다. 때문에 본 연구에서 암호화폐 가격 변화에 미치는 영향 요인을 도출하기 위해 암호화폐 중 가장 대표적인 비트코인을 중심으로 분석을 진행하였다. 분석을 위해 소비자, 산업, 거시경제 세 가지 차원에서 가설을 수립, 각 차원의 변수에 대한 시계열 데이터를 수집하였다. 단위근 검정을 통해 시계열 데이터에 대한 가성 회귀를 제거하고 안정성을 검증한 후, 비트코인 가격 변화량에 영향을 미칠 수 있는 요인들에 대한 회귀 분석을 실시하였다. 분석 결과 비트코인 가격 변화량은 비트코인 거래 금지에 대한 검색 트래픽, 미국 달러지수 변화량과는 음의 상관관계를, GPU 벤더의 주가 변화량, 원유 가격 변화량과는 양의 상관관계를 갖는 것을 확인했다. 그 이유로는 비트코인 거래 금지는 비트코인 존폐와 관련해 투자심리에 부정적 영향을 미친 것으로 판단되며, GPU 벤더 주가는 비트코인 생산 단가 증가와 관련해 비트코인 가격에 영향을 미친 것으로 해석된다. 미국 달러지수와는 반대로 움직임으로서 비트코인이 금의 성격을 갖고 있음을 확인하였으며, 원유 가격과의 관계를 통해 원자재와 같은 투자 자산의 역할도 갖고 있음을 확인하였다. 본 연구의 결과를 통해 비트코인이 가진 성격을 규명하였으며, 비트코인 가격 변화 요인에 대한 실증 검증을 통해, 그 동안 부족했던 비트코인 가격 변화 요인을 규명하였고, 해당 요인들을 통해 실무적으로 소비자나 금융기관, 정부 기관에 대해 비트코인에 대한 전략적인 접근방법에 대한 가이드를 제공할 수 있다는 점에서 의의가 있다.

Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석 (Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression)

  • 김선웅;최흥식
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.107-122
    • /
    • 2017
  • 주식시장의 주가 수익률에 나타나는 변동성은 투자 위험의 척도로서 재무관리의 이론적 모형에서뿐만 아니라 포트폴리오 최적화, 증권의 가격 평가 및 위험관리 등 투자 실무 영역에서도 매우 중요한 역할을 하고 있다. 변동성은 주가 수익률이 평균을 중심으로 얼마나 큰 폭의 움직임을 보이는가를 판단하는 지표로서 보통 수익률의 표준편차로 측정한다. 관찰 가능한 표준편차는 과거의 주가 움직임에서 측정되는 역사적 변동성(historical volatility)이다. 역사적 변동성이 미래의 주가 수익률의 변동성을 예측하려면 변동성이 시간 불변적(time-invariant)이어야 한다. 그러나 대부분의 변동성 연구들은 변동성이 시간 가변적(time-variant)임을 보여주고 있다. 이에 따라 시간 가변적 변동성을 예측하기 위한 여러 계량 모형들이 제안되었다. Engle(1982)은 변동성의 시간 가변적 특성을 잘 반영하는 변동성 모형인 Autoregressive Conditional Heteroscedasticity(ARCH)를 제안하였으며, Bollerslev(1986) 등은 일반화된 ARCH(GARCH) 모형으로 발전시켰다. GARCH 모형의 실증 분석 연구들은 실제 증권 수익률에 나타나는 두터운 꼬리 분포 특성과 변동성의 군집현상(clustering)을 잘 설명하고 있다. 일반적으로 GARCH 모형의 모수는 가우스분포로부터 추출된 자료에서 최적의 성과를 보이는 로그우도함수에 대한 최우도추정법에 의하여 추정되고 있다. 그러나 1987년 소위 블랙먼데이 이후 주식 시장은 점점 더 복잡해지고 시장 변수들이 많은 잡음(noise)을 띠게 됨에 따라 변수의 분포에 대한 엄격한 가정을 요구하는 최우도추정법의 대안으로 인공지능모형에 대한 관심이 커지고 있다. 본 연구에서는 주식 시장의 주가 수익률에 나타나는 변동성의 예측 모형인 GARCH 모형의 모수추정방법으로 지능형 시스템인 Support Vector Regression 방법을 제안한다. SVR은 Vapnik에 의해 제안된 Support Vector Machines와 같은 원리를 회귀분석으로 확장한 모형으로서 Vapnik의 e-insensitive loss function을 이용하여 비선형 회귀식의 추정이 가능해졌다. SVM을 이용한 회귀식 SVR은 두터운 꼬리 분포를 보이는 주식시장의 변동성과 같은 관찰치에서도 우수한 추정 성능을 보인다. 2차 손실함수를 사용하는 기존의 최소자승법은 부최적해로서 추정 오차가 확대될 수 있다. Vapnik의 손실함수에서는 입실론 범위내의 예측 오차는 무시하고 큰 예측 오차만 손실로 처리하기 때문에 구조적 위험의 최소화를 추구하게 된다. 금융 시계열 자료를 분석한 많은 연구들은 SVR의 우수성을 보여주고 있다. 본 연구에서는 주가 변동성의 분석 대상으로서 KOSPI 200 주가지수를 사용한다. KOSPI 200 주가지수는 한국거래소에 상장된 우량주 중 거래가 활발하고 업종을 대표하는 200 종목으로 구성된 업종 대표주들의 포트폴리오이다. 분석 기간은 2010년부터 2015년까지의 6년 동안이며, 거래일의 일별 주가지수 종가 자료를 사용하였고 수익률 계산은 주가지수의 로그 차분값으로 정의하였다. KOSPI 200 주가지수의 일별 수익률 자료의 실증분석을 통해 기존의 Maximum Likelihood Estimation 방법과 본 논문이 제안하는 지능형 변동성 예측 모형의 예측성과를 비교하였다. 주가지수 수익률의 일별 자료 중 학습구간에서 대칭 GARCH 모형과 E-GARCH, GJR-GARCH와 같은 비대칭 GARCH 모형에 대하여 모수를 추정하고, 검증 구간 데이터에서 변동성 예측의 성과를 비교하였다. 전체 분석기간 1,487일 중 학습 기간은 1,187일, 검증 기간은 300일 이다. MLE 추정 방법의 실증분석 결과는 기존의 많은 연구들과 비슷한 결과를 보여주고 있다. 잔차의 분포는 정규분포보다는 Student t분포의 경우 더 우수한 모형 추정 성과를 보여주고 있어, 주가 수익률의 비정규성이 잘 반영되고 있다고 할 수 있다. MSE 기준으로, SVR 추정의 변동성 예측에서는 polynomial 커널함수를 제외하고 linear, radial 커널함수에서 MLE 보다 우수한 예측 성과를 보여주었다. DA 지표에서는 radial 커널함수를 사용한 SVR 기반의 지능형 GARCH 모형이 가장 우수한 변동성의 변화 방향에 대한 방향성 예측력을 보여주었다. 추정된 지능형 변동성 모형을 이용하여 예측된 주식 시장의 변동성 정보가 경제적 의미를 갖는지를 검토하기 위하여 지능형 변동성 거래 전략을 도출하였다. 지능형 변동성 거래 전략 IVTS의 진입규칙은 내일의 변동성이 증가할 것으로 예측되면 변동성을 매수하고 반대로 변동성의 감소가 예상되면 변동성을 매도하는 전략이다. 만약 변동성의 변화 방향이 전일과 동일하다면 기존의 변동성 매수/매도 포지션을 유지한다. 전체적으로 SVR 기반의 GARCH 모형의 투자 성과가 MLE 기반의 GARCH 모형의 투자 성과보다 높게 나타나고 있다. E-GARCH, GJR-GARCH 모형의 경우는 MLE 기반의 GARCH 모형을 이용한 IVTS 전략은 손실이 나지만 SVR 기반의 GARCH 모형을 이용한 IVTS 전략은 수익으로 나타나고 있다. SVR 커널함수에서는 선형 커널함수가 더 좋은 투자 성과를 보여주고 있다. 선형 커널함수의 경우 투자 수익률이 +526.4%를 기록하고 있다. SVR 기반의 GARCH 모형을 이용하는 IVTS 전략의 경우 승률도 51.88%부터 59.7% 사이로 높게 나타나고 있다. 옵션을 이용하는 변동성 매도전략은 방향성 거래전략과 달리 하락할 것으로 예측된 변동성의 예측 방향이 틀려 변동성이 소폭 상승하거나 변동성이 하락하지 않고 제자리에 있더라도 옵션의 시간가치 요인 때문에 전체적으로 수익이 실현될 수도 있다. 정확한 변동성의 예측은 자산의 가격 결정뿐만 아니라 실제 투자에서도 높은 수익률을 얻을 수 있기 때문에 다양한 형태의 인공신경망을 활용하여 더 나은 예측성과를 보이는 변동성 예측 모형을 개발한다면 주식시장의 투자자들에게 좋은 투자 정보를 제공하게 될 것이다.