• Title/Summary/Keyword: 자발점화

Search Result 40, Processing Time 0.017 seconds

Study on Vaporization and Combustion of Spray in High Pressure Environment (고압에서의 분무의 증발 및 연소 현상에 관한 연구)

  • Wang, Tae-Joong;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1273-1281
    • /
    • 2003
  • The present study is mainly motivated to investigate the vaporization, auto-ignition, and combustion of liquid fuel spray injected into high pressure environment. The unsteady, multi-dimensional models were used for realistic simulation of spray as well as prediction of accurate ignition delay time. The Separated Flow (SF) model which considers the finite rate of transport between liquid and gas phases was employed to represent the interactions between spray and gas field. Among the SF models, the Discrete Droplet Model (DDM) which simulates the spray using finite number of representative samples of discrete droplets was adopted. The Eulerian-Lagrangian formulation was used to analyze the two-phase interactions. In order to predict an evaporation rate of droplet in high pressure environment, the high pressure vaporization model was applied using thermodynamic equilibrium and phase equilibrium at droplet surface. The high pressure effect as well as high temperature effect was considered in the calculation of liquid and gas properties. In case of vaporization, an interaction between droplets was studied through the simulation of spray. The interaction is shown up differently whether the ambient gas field is at normal pressure or high pressure. Also, the characteristics of spray behavior in high pressure environment were investigated through the comparison with normal ambient pressure case. In both cases, the spray behaviors are simulated through the distributions of temperature and reaction rate in gas field.

Performance and Emission Characteristics of Compression Ignition Gasoline Engine (압축점화 가솔린기관의 성능 및 배기특성)

  • Kim, Hong-Sung;Kim, Mun-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.1007-1014
    • /
    • 2003
  • This work deals with a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel is injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector is water-cooled by a specially designed coolant passage. Investigated are the engine performance and emission characteristics under the wide range of operating conditions such as 32 to 63 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, and 150 to 18$0^{\circ}C$ in the inlet air temperature. The compression ignition gasoline engine can be achieved that the ultra lean-burn with self-ignition of gasoline fuel by heating inlet air. For example. the allowable lean limit of air-fuel ratio is extended until 63 at engine speed of 1000 rpm and inlet air temperature of 17$0^{\circ}C$. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide had been significantly reduced by CAI combustion compared with conventional spark ignition engine.

A Study of the Temperature Elevation Due to the Pre-flame Reaction in a Spark-Ignition Engine Using CARS Technique (CARS 측정 기술을 이용한 스파크 점화 기관에서의 화염 전 화학 반응에 의한 온도 변화에 관한 연구)

  • 최인용;전광민;박철웅;한재원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.9-16
    • /
    • 2001
  • End-gas temperatures were measured using CARS technique in a conventional DOHC spark- ignition engine fueled with PRF80. The measured pressure data were analyzed using band pass filter method. The measured CARS temperatures were compared with adiabatic core temperatures calculated from measured pressures. Significant heating by pre-flame reaction in the end gas zone was observed in the late part of compression stroke under both knocking and non-knocking conditions. CARS temperatures measured at 10 crank angle degree before knock occurrence was higher than adiabatic core temperatures. These results indicate that there exist some exothermic reactions in low pressure and temperature region. CARS temperatures began to be higher than the adiabatic core temperature when the end-gas temperatures reached look. The temperature elevation due to the pre-flame reaction correlated better with CARS temperature than with cylinder pressure.

  • PDF

Investigation on the Self-ignition of High-pressure Hydrogen in a Tube between Different Inner Diameter (튜브 직경에 따른 고압 수소의 자발 점화 현상에 대한 연구)

  • Kim, Sei Hwan;Jeung, In-Seuck;Lee, Hyoung Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.23 no.1
    • /
    • pp.36-43
    • /
    • 2018
  • Numerical simulations and experiments are performed to investigate the flame development inside tubes with different diameters at the same burst pressure. It is shown that generation of a stable flame play a role in self-ignition. In the smaller tube, multi-dimensional shock interaction is occurred near the diaphragm. After flame of a cross-section is developed, stable flame remains for a moment then it grows having enough energy to overcome the sudden release at the exit. Whereas shock interaction generate complex flow further downstream for a larger tube, it results in stretched flame. This dispersed flame has lower average temperature which makes it easily extinguished.

Numerical Study of Ignition and Combustion Process of a Diesel Spray (Diesel spray의 점화와 연소 특성 해석)

  • 김용모;권영동;김후중;김세원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.15-26
    • /
    • 1997
  • The present study is mainly motivated to numerically simulate the autoignition and combustion process of a diesel spray in RCM and effects of design parameters on combustion and engine performance in the DI diesel engine using EGR. In case of the burning spray in RCM, special emphasis is given to the autoignition process coupled with the fluid mechanics and chemical reaction. Computations are carried out for a wide range of operating condition in terms of temperature, concentration of oxygen and carbon dioxide of the intake gas in the DI diesel engine. Numerical results indicate that the mixing process along the edges of spray jet has a crucial role for autoignition and combustion process. Temperature and concentration of O2 and CO2 of intake gas significantly influence the combustion characteristics and engine performance in the diesel/EGR environment.

  • PDF

Numerical Modeling for Auto-Ignition and Combustion Processes of Dimethyl Ether (DME) Fuel Sprays (DME 연료의 점화 및 연소특성 해석)

  • Lee, J.W.;Ryu, L.S.;Kim, Y.M.
    • Journal of ILASS-Korea
    • /
    • v.10 no.4
    • /
    • pp.16-25
    • /
    • 2005
  • The present study is mainly motivated to investigate the vaporization, auto-ignition and combustion processes in high-pressure engine conditions. In order to realistically simulate the dimethyl ether (DME) spray dynamics and vaporization characteristics in high-pressure and high-temperature environment, the high-pressure vaporization model is utilized. The interaction between chemistry and turbulence is treated by employing the Representative Interaction Flamelet(RIF) model. The detailed chemistry of 336 elementary steps and 78 chemical species is used for the DME/air reaction. Numerical results indicate that the RIF approach, together with the high-pressure vaporization model, successfully predicts the essential feature of ignition and spray combustion processes.

  • PDF

Numerical Investigation on the Self-Ignition of High-pressure Hydrogen in a Tube Influenced by Burst Diaphragm Shape (튜브 내 고압 수소의 파열막 형상에 따른 자발 점화 현상에 대한 수치해석)

  • Lee, Hyoung Jin;Kim, Sung Don;Kim, Sei Hwan;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.3
    • /
    • pp.31-37
    • /
    • 2013
  • Numerical simulations are conducted to investigate the feature of spontaneous ignition of hydrogen within a certain length of downstream tube released by the failure of pressure boundaries of various geometric assumption. The results show that the ignition feature can be varied with the shape of pressure boundary. The ignition at the contact region are developed at the spherical pressure boundaries due to multi-dimensional shock interactions, whereas the local ignition is developed in limited area such as boundary layer at the planar pressure boundary conditions. The spontaneous ignition inside the tube can be generated from the reaction region of only boundary layer regardless of existence of the reaction of core region.

A study of area-ratio effect on self-ignition of high pressure hydrogen gas released in to a tube (면적비 변화에 따른 튜브 내 고압 수소 자발점화현상 연구)

  • Yoon, Hee;Lee, SangYoon;Jeong, Man Chul;Jeung, In-Seuck;Lee, Hyoung Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.147-150
    • /
    • 2015
  • When high-pressure gas is suddenly leaked out into the air, unexpected ignition occurs without any external ignition source. Until now, there have been investigations on self-ignition of hydrogen by supplying high-pressure hydrogen gas into a tube. However the mechanism of hydrogen ignition is still unclear. This paper describes the area-ratio effect on hydrogen ignition by inserting a brass plate. The results show that the ignition phenomena differ as the area-ratio changed. Also, the rupture pressure for self-ignition has to be higher.

  • PDF

Self-Ignition of Hydrogen in a Pipe by Rupture of Pressure Boundaries (파열 압력경계 조건에 따른 파이프 내에서의 수소 자발 점화)

  • Lee, Hyoung Jin;Kim, Sung Don;Kim, Sei Hwan;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.95-96
    • /
    • 2013
  • Numerical simulations are conducted to investigate the mechanism of spontaneous ignition of hydrogen within a certain length of downstream pipe released by the failure of pressure boundaries of various geometric assumption. The results show that local ignition is developed in limited area such as boundary layer and the mixing of hydrogen and air is weak at the planar pressure boundary conditions, whereas the flame fronts at the contact region are developed at the pressure boundaries of the spherical shape.

  • PDF

Effect of an inner diameter of the extension tube on the self-ignition characteristics (튜브 내경 변화에 따른 고압 수소의 튜브 내 자발 점화 특성)

  • Kim, Seihwan;Lee, Hyoung Jin;Park, Ji Hyun;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.11-12
    • /
    • 2013
  • To investigate the effect of an inner diameter of the extension tube on the self-ignition when high pressurized hydrogen abruptly released through a tube, both experimental and numerical approach are used. The result show that there is a possibility to have successful ignition when the tube diameter is decreased even at the pressure that could not give sustainable flame with a larger diameter tube. Numerical simulation show the flame development inside the tube and weak and stretch flame spout the tube for 10.9 mm tube, whereas strong complete flame has been generated for 3 mm tube.

  • PDF