• Title/Summary/Keyword: 자료 전처리

Search Result 476, Processing Time 0.03 seconds

PREPROCESSING OF THE GPS RAW DATA FOR THE PRECISION ORBIT DETERMINATION BY DGPS TECHNIQUE (DGPS 방식에 의한 위성의 정밀궤도 결정을 위한 GPS 원시 자료 전처리)

  • 문보연;이정숙;이병선;김재훈;박은서;윤재철;노경민;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.2
    • /
    • pp.163-172
    • /
    • 2002
  • This article investigates the problem of data preprocessing for the precision orbit determination (POD) of low earth orbit satellite using GPS .aw data. Several data preprocessing algorithms have been developed to edit the GPS data automatically such that outlier deletion, cycle slip identification and correction, and time tag error correction. The GPS data are precisely edited for the accuracy of POD. Some methods of data preprocessing are restricted to the rate of the collections of the pseudorange and carrier phase measurements. This study considers the preprocessing efficiency varied with the rate, the quality of receiver and the altitude of the satellite's orbit. We also propose the proper methods in accordance with the rate for single frequency and dual frequency receivers.

Application of data preprocessing to improve the performance of the metaheuristic optimization algorithm-deep learning combination model (메타휴리스틱 최적화 알고리즘-딥러닝 결합모형의 성능 개량을 위한 데이터 전처리의 적용)

  • Ryu, Yong Min;Lee, Eui Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.114-114
    • /
    • 2022
  • 딥러닝의 학습 및 예측성능을 개선하기 위해서는 딥러닝 기법 내 연산과정의 개선과 함께 학습 및 예측에 사용되는 데이터의 전처리 과정이 중요하다. 본 연구에서는 딥러닝의 성능을 개량하기 위해 제안된 메타휴리스틱 최적화 알고리즘-딥러닝 결합모형과 데이터 전처리 기법을 통해 댐의 수위를 예측하였다. 수위예측을 위해 Multi-Layer Perceptron(MLP), 메타휴리스틱 최적화 알고리즘인 Harmony Search(HS)와 딥러닝을 결합한 MLP using a HS(MLPHS) 및 Exponential Bandwidth Harmony Search with Centralized Global Search(EBHS-CGS)와 딥러닝을 결합한MLP using a EBHS-CGS(MLPEBHS)를 통해 댐의 수위를 예측하였다. 메타휴리스틱 최적화 알고리즘-딥러닝 결합모형의 학습 및 예측성능을 개선하기 위해 학습 및 예측을 위한 자료를 기반으로 데이터 전처리기법을 적용하였다. 적용된 데이터 전처리 기법은 정규화, 수위구간별 사상(Event)분리 및 수위 변동에 대한 자료의 구분이다. 수위예측을 위한 대상유역은 금강유역에 위치한 대청댐으로 선정하였다. 대청댐의 수위예측을 위해 대청댐 상류에 위치하는 수위관측소 3개소를 선정하여 수위자료를 취득하였다. 각 수위관측소에서 취득한 수위자료를 입력자료로 설정하였으며, 대청댐의 수위자료를 출력자료로 설정하여 메타휴리스틱 최적화 알고리즘-딥러닝 모형의 학습을 진행하였다. 각 수위관측소 및 대청댐에서 취득한 수위자료는 2010년부터 2020년까지 총 11년의 일 단위 수위자료이며, 2010년부터 2019년까지의 자료를 학습자료로 사용하였으며, 2020년의 자료를 예측 및 검증자료로 사용하였다.

  • PDF

Improvement of A Preprocessing of Archived Traffic Data Collected by Expressway Vehicle Detection System (고속도로 차량검지기 이력자료 활용을 위한 전처리과정 개선)

  • Lee, Hwan-Pil;NamKoong, Seong;Kim, Soo-Hee;Kim, Jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.1
    • /
    • pp.15-27
    • /
    • 2013
  • While the vehicle detector is collected from a variety of information was mainly used as a real-time data. Recently scheme of application for archived traffic data has become increasingly important. In this background, this research were conducted on the improvement of the preprocessing for archived traffic data application. The purpose of improving specific preprocessing was reflect transportation phenomena by traffic data. As evaluation result, improvement preprocessing was close to the actual value than exist preprocessing.

Web-Based Data Preprocessing and Model Linkage System for Agricultural Water-Resource Management (농촌유역 물순환 해석을 위한 웹기반 자료 전처리 및 모형 연계 시스템 개발)

  • Park, Jihoon;Kang, Moon Seong;Song, Inhong;Song, Jung-Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.503-503
    • /
    • 2015
  • 농촌유역의 물순환 해석은 기후변화, 사회/경제적 변화, 유역환경변화 등의 복잡한 상호작용과 불확실성을 수반한 다양한 형태로 발현하고 있다. 효율적인 농촌유역 수자원 관리를 위해서는 농촌유역에 적합한 데이터베이스를 설계하여 농업생산기반시설, 유역 특성, 기상 및 수문 자료, 기후 변화 자료를 각각 구축하고, 외부 환경의 일회성 평가에 기반을 두어 수행되었던 과거의 접근 방법에서 나아가 내외부의 복합적인 환경변화를 능동적으로 반영하기 위한 요소 모듈 방식의 지능형 관리기법의 개발이 필요하다. 본 연구의 목적은 농촌유역 물순환 해석을 위해 필요한 자료를 효율적으로 가공 및 사용할 수 있는 웹기반 자료 전처리 및 모형 연계 시스템을 개발하는데 있다. 농촌유역 물순환 해석을 위해 농촌유역 데이터베이스 설계, 농업생산기반시설 인벤토리 구축, 유역 물리특성/기상/수문 등의 데이터베이스 구축, 기후변화 자료를 구축하고 이를 웹으로 구현하여 물순환 해석 시스템을 개발하였다. 본 연구는 농촌유역 물순환 해석을 위한 자료 전처리 및 모형 연계 시스템을 개발함으로써 지능형 물순환 해석 및 관리 시스템을 개발하는데 기여할 수 있을 것으로 사료된다.

  • PDF

In-Orbit Test Operational Validation of the COMS Image Data Acquisition and Control System (천리안 송수신자료전처리시스템의 궤도상 시험 운영 검증)

  • Lim, Hyun-Su;Ahn, Sang-Il;Seo, Seok-Bae;Park, Durk-Jong
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • The Communication Ocean and Meteorological Satellite(COMS), the first geostationary observation satellite, was successfully launched on June 27th in 2010. The raw data of Meteorological Imager(MI) and Geostationary Ocean Color Imager(GOCI), the main payloads of COMS, is delivered to end-users through the on-ground processing. The COMS Image Data Acquisition and Control System(IDACS) developed by Korea Aerospace Research Institute(KARI) in domestic technologies performs radiometric and geometric corrections to raw data and disseminates pre-processed image data and additional data to end-users through the satellite. Currently the IDACS is in the nominal operations phase after successful in-orbit testing and operates in National Meteorological Satellite Center, Korea Ocean Satellite Center, and Satellite Operations Center, During the in-orbit test period, validations on functionalities and performance IDACS were divided into 1) image data acquisition and transmission, 2) preprocessing of MI and GOCI raw data, and 3) end-user dissemination. This paper presents that IDACS' operational validation results performed during the in-orbit test period after COMS' launch.

Aeromagnetic Pre-processing Software Based on Graphic User Interface, KMagLevellingTM (그래픽 사용자 인터페이스 기반 항공자력탐사 전처리 S/W, KMagLevellingTM)

  • Ko, Kwang-Beom;Jung, Sang-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.3
    • /
    • pp.171-178
    • /
    • 2014
  • Aeromagnetic survey generally require much more pre-processing steps than that of common land survey due to several complex and cumbersome steps included in pre-processing stage. Therefore it is desirable to use specific processing tool especially based on graphic user interface. For this purpose, aeromagnetic pre-processing software based on graphic user interface under the Windows environment, called $KMagLevelling^{TM}$ was developed and briefly introduced. In an aspect of its user-friendliness and originality, three noticeable features of $KMagLevelling^{TM}$ are summarized as the following (1) function of representation and handling for large amount of aeromagnetic data set as a visualization in the form of flight-path (2) function of selective exclusion of unwanted data by using survey area information expressed as polygon, and (3) function of selective removal processing for the irregular flight-path data acquired within the entire survey area by implementing the segmentation of flight-path technique.

Free-air Anomaly from a Consistent Preprocessing of Land Gravity Data in South Korea (우리나라 지상중력자료의 일관된 전처리를 통한 프리에어이상값)

  • Lee, Ji-Sun;Lee, Bo-Mi;Kwon, Jay-Hyoun;Lee, Yong-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.4
    • /
    • pp.379-386
    • /
    • 2008
  • To determine the precise geoid, the quality land gravity data as well as the accurate position information of the observation points are required. Here, the land gravity data should be processed in a consistent way from the raw data level producing the quality free-air anomaly being used in the geoid determination. In this study, we processed land gravity data of KIGAM(Korea Institute of Geoscience and Mineral Resources) and Pusan national university which has precise position information acquired from GPS and raw gravity data. The conversion from readings of gravimeter to the gravity value, corrections of instrumental height and tide were carried out from the raw gravity data for each surveying session. Then, a cross-over adjustment was applied to generate a free-air anomaly for whole data with precision of 0.48 mGal. It is expected that the data processed through this study shall be a foundation on the determination of the precise geoid model in Korea.

Prediction of Composition Ratio of DNA Solution from Measurement Data with White Noise Using Neural Network (잡음이 포함된 측정 자료에 대한 신경망의 DNA 용액 조성비 예측)

  • Gyeonghee Kang;Minji Kim;Hyomin Lee
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.118-124
    • /
    • 2024
  • A neural network is utilized for preprocessing of de-noizing in electrocardiogram signals, retinal images, seismic waves, etc. However, the de-noizing process could provoke increase of computational time and distortion of the original signals. In this study, we investigated a neural network architecture to analyze measurement data without additional de-noizing process. From the dynamical behaviors of DNA in aqueous solution, our neural network model aimed to predict the mole fraction of each DNA in the solution. By adding white noise to the dynamics data of DNA artificially, we investigated the effect of the noise to neural network's predictions. As a result, our model was able to predict the DNA mole fraction with an error of O(0.01) when signal-to-noise ratio was O(1). This work can be applied as a efficient artificial intelligence methodology for analyzing DNA related to genetic disease or cancer cells which would be sensitive to background measuring noise.

A Study of Data Preprocessing Algorithm Using TCS/HI-PASS Data (TCS/HI-PASS 데이터를 이용한 전처리 알고리즘 구현에 관한 연구)

  • Jeong, Hyeon-Seok;Oh, Sang-Seok;Min, Sung-Gi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.1005-1008
    • /
    • 2011
  • 본 논문에서는 교통 이력자료의 시공간 데이터를 활용하여 교통 분석 및 예측에 필요한 신뢰성 높은 데이터를 제공하기 위한 TCS/HI-PASS 전처리 알고리즘을 제안한다. 시공간 데이터의 전처리 알고리즘은 각종 교통정보에 이용되고 있으며, 그 중 대표적으로 활용되고 있는 것이 차량 검지기(VDS)를 통해 수집된 교통량, 속도, 점유율 정보이다. 이러한 정보에 가공처리 알고리즘을 적용하여 공간평균속도 기반의 통행시간을 산정하고 있으며, 고속도로 통행료 수납시스템(TCS)으로 부터는 출발영업소와 도착영업소의 진 출입시간을 기반으로 평균통행시간을 산정하고 있다. 본 연구에서는 차량 검지기(VDS) 데이터와 기존 TCS 데이터의 전처리 알고리즘을 분석하여 TCS와 HI-PASS 데이터 기반의 개선된 전처리 알고리즘을 설계, 구현하였다.

Preprocessing Methods and Analysis of Grid Size for Watershed Extraction (유역경계 추출을 위한 DEM별 전처리 방법과 격자크기 분석)

  • Kim, Dong-Moon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.1
    • /
    • pp.41-50
    • /
    • 2008
  • Recent progress in state-of-the-art geospatial information technologies such as digital mapping, LiDAR(Light Detection And Ranging), and high-resolution satellite imagery provides various data sources fer Digital Elevation Model(DEM). DEMs are major source to extract elements of the hydrological terrain property that are necessary for efficient watershed management. Especially, watersheds extracted from DEM are important geospatial database to identify physical boundaries that are utilized in water resource management plan including water environmental survey, pollutant investigation, polluted/wasteload/pollution load allocation estimation, and water quality modeling. Most of the previous studies related with watershed extraction using DEM are mainly focused on the hydrological elements analysis and preprocessing without considering grid size of the DEMs. This study aims to analyze accuracy of the watersheds extracted from DEMs with various grid sizes generated by LiDAR data and digital map, and appropriate preprocessing methods.