• Title/Summary/Keyword: 자동 추출 자질

Search Result 68, Processing Time 0.023 seconds

An Experimental Study on an Effective Word Sense Disambiguation Model Based on Automatic Sense Tagging Using Dictionary Information (사전 정보를 이용한 단어 중의성 해소 모형에 관한 실험적 연구)

  • Lee, Yong-Gu;Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.24 no.1 s.63
    • /
    • pp.321-342
    • /
    • 2007
  • This study presents an effective word sense disambiguation model that does not require manual sense tagging Process by automatically tagging the right sense using a machine-readable and the collocation co-occurrence-based methods. The dictionary information-based method that applied multiple feature selection showed the tagging accuracy of 70.06%, and the collocation co-occurrence-based method 56.33%. The sense classifier using the dictionary information-based tagging method showed the classification accuracy of 68.11%, and that using the collocation co-occurrence-based tagging method 62.09% The combined 1a99ing method applying data fusion technique achieved a greater performance of 76.09% resulting in the classification accuracy of 76.16%.

Audio-Visual Scene Aware Dialogue System Utilizing Action From Vision and Language Features (이미지-텍스트 자질을 이용한 행동 포착 비디오 기반 대화시스템)

  • Jungwoo Lim;Yoonna Jang;Junyoung Son;Seungyoon Lee;Kinam Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.253-257
    • /
    • 2023
  • 최근 다양한 대화 시스템이 스마트폰 어시스턴트, 자동 차 내비게이션, 음성 제어 스피커, 인간 중심 로봇 등의 실세계 인간-기계 인터페이스에 적용되고 있다. 하지만 대부분의 대화 시스템은 텍스트 기반으로 작동해 다중 모달리티 입력을 처리할 수 없다. 이 문제를 해결하기 위해서는 비디오와 같은 다중 모달리티 장면 인식을 통합한 대화 시스템이 필요하다. 기존의 비디오 기반 대화 시스템은 주로 시각, 이미지, 오디오 등의 다양한 자질을 합성하거나 사전 학습을 통해 이미지와 텍스트를 잘 정렬하는 데에만 집중하여 중요한 행동 단서와 소리 단서를 놓치고 있다는 한계가 존재한다. 본 논문은 이미지-텍스트 정렬의 사전학습 임베딩과 행동 단서, 소리 단서를 활용해 비디오 기반 대화 시스템을 개선한다. 제안한 모델은 텍스트와 이미지, 그리고 오디오 임베딩을 인코딩하고, 이를 바탕으로 관련 프레임과 행동 단서를 추출하여 발화를 생성하는 과정을 거친다. AVSD 데이터셋에서의 실험 결과, 제안한 모델이 기존의 모델보다 높은 성능을 보였으며, 대표적인 이미지-텍스트 자질들을 비디오 기반 대화시스템에서 비교 분석하였다.

  • PDF

Relation Extraction using Lexical Patterns based on Predicate-Argument Structure (Predicate-Argument Structure 기반의 어휘적 패턴을 이용한 관계 추출)

  • Jeong, Chang-Hoo;Jhun, Hong-Woo;Choi, Yun-Soo;Choi, Sung-Pil
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.748-750
    • /
    • 2010
  • 문서 내에 존재하는 개체들 간의 관계를 자동으로 추출할 때 다양한 형태의 문서 분석 결과를 활용할 수 있는데, 본 논문에서는 문장 내에 존재하는 각 단어의 predicate-argument 관계를 분석하여 자질로 활용하는 PAS 패턴 기반 관계 추출 시스템을 제안한다. 관계 종류별로 구축된 PAS 패턴 집합을 활용하여 관계 식별기를 개발하였고, 실험을 통하여 개발된 관계 식별기의 성능을 측정하였다. 실험 결과 개체 간의 유의미한 관계를 표현해주는 PAS 패턴이 관계 추출 작업에 유용한 정보임을 알 수 있었다.

구문패턴을 이용한 반자동 구문분석 말뭉치 구축도구

  • Im, Jun-Ho;Park, So-Yeong;Gwak, Yong-Jae;Im, Hae-Chang;Kim, Ui-Su;Gang, Beom-Mo
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.343-350
    • /
    • 2002
  • 본 논문에서는 구문패턴을 이용한 반자동 구문분석 말뭉치 구축도구를 제안한다. 일반적으로 구문분석 말뭉치를 구축하는 작업은 문법전문가의 많은 시간과 노력을 필요로 하고 있다. 본 논문은 구문분석 말뭉치를 구축할 때 수작업을 감소시켜 줄 수 있는 도구를 개발하기 위하여, 사용자가 정의하는 자질집합과 신뢰도를 바탕으로 구문패턴을 자동 추출하고 적용하는 방법을 제안한다. 소량의 말뭉치에서 실험한 결과, 구문패턴의 사용은 30%정도의 수작업을 감소시킬 수 있는 것으로 나타났다.

  • PDF

Application of Machine Learning Techniques for Resolving Korean Author Names (한글 저자명 중의성 해소를 위한 기계학습기법의 적용)

  • Kang, In-Su
    • Journal of the Korean Society for information Management
    • /
    • v.25 no.3
    • /
    • pp.27-39
    • /
    • 2008
  • In bibliographic data, the use of personal names to indicate authors makes it difficult to specify a particular author since there are numerous authors whose personal names are the same. Resolving same-name author instances into different individuals is called author resolution, which consists of two steps: calculating author similarities and then clustering same-name author instances into different person groups. Author similarities are computed from similarities of author-related bibliographic features such as coauthors, titles of papers, publication information, using supervised or unsupervised methods. Supervised approaches employ machine learning techniques to automatically learn the author similarity function from author-resolved training samples. So far however, a few machine learning methods have been investigated for author resolution. This paper provides a comparative evaluation of a variety of recent high-performing machine learning techniques on author disambiguation, and compares several methods of processing author disambiguation features such as coauthors and titles of papers.

A Comparative Analysis of Content-based Music Retrieval Systems (내용기반 음악검색 시스템의 비교 분석)

  • Ro, Jung-Soon
    • Journal of the Korean Society for information Management
    • /
    • v.30 no.3
    • /
    • pp.23-48
    • /
    • 2013
  • This study compared and analyzed 15 CBMR (Content-based Music Retrieval) systems accessible on the web in terms of DB size and type, query type, access point, input and output type, and search functions, with reviewing features of music information and techniques used for transforming or transcribing of music sources, extracting and segmenting melodies, extracting and indexing features of music, and matching algorithms for CBMR systems. Application of text information retrieval techniques such as inverted indexing, N-gram indexing, Boolean search, truncation, keyword and phrase search, normalization, filtering, browsing, exact matching, similarity measure using edit distance, sorting, etc. to enhancing the CBMR; effort for increasing DB size and usability; and problems in extracting melodies, deleting stop notes in queries, and using solfege as pitch information were found as the results of analysis.

Analysis and Prediction of Prosodic Phrage Boundary (운율구 경계현상 분석 및 텍스트에서의 운율구 추출)

  • Kim, Sang-Hun;Seong, Cheol-Jae;Lee, Jung-Chul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.24-32
    • /
    • 1997
  • This study aims to describe, at one aspect, the relativity between syntactic structure and prosodic phrasing, and at the other, to establish a suitable phrasing pattern to produce more natural synthetic speech. To get meaningful results, all the word boundaries in the prosodic database were statistically analyzed, and assigned by the proper boundary type. The resulting 10 types of prosodic boundaries were classified into 3 types according to the strength of the breaks, which are zero, minor, and major break respectively. We have found out that the durational information was a main cue to determine the major prosodic boundary. Using the bigram and trigram of syntactic information, we predicted major and minor classification of boundary types. With brigram model, we obtained the correct major break prediction rates of 4.60%, 38.2%, the insertion error rates of 22.8%, 8.4% on each Test-I and Test-II text database respectively. With trigram mode, we also obtained the correct major break prediction rates of 58.3%, 42.8%, the insertion error rates of 30.8%, 42.8%, the insertion error rates of 30.8%, 11.8% on Test-I and Test-II text database respectively.

  • PDF

A New Method for Improving Performance in ACE Relation Detect ion and Characterization (ACE 관계 추출과 특징화 과정에서 성능 향상을 위한 새로운 방법(1))

  • Kim, Kyung-Duk;Kim, Seok-Hwan;Lee, Gray Geun-Bae;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2005.10a
    • /
    • pp.1-6
    • /
    • 2005
  • 텍스트 기반 문서의 급증으로 인해 정보 추출 기술이 더욱 중요해지고 있다 특히 최근에 활발한 연구가 진행되고 있는 개체 간 관계 추출 기술은 정보검색과 질의응답 등 많은 분야에 걸쳐 활용될 수 있는 기술이다 본 논문은 기존의 자질 기반 관계 추출 시스템의 재현율을 향상시키기 위해 WHISK 알고리즘을 도입한 시스템에 관한 것이다. WHISK 알고리즘은 문장으로부터 관계에 참여하는 개체 쌍을 추출하는 규칙을 자동으로 학습한다. 그리고 시스템은 최대 엔트로피 모델을 이용하여 WHISK에 의해 추출된 개체 쌍에 적합한 관계 유형을 파악해 낸다. 본 논문은 시스템에 사용된 WHISK 알고리즘과 최대 엔트로피 모델에 대해서 알아보고, 실제로 WHISK 알고리즘을 도입하여 관계를 가지는 개체 쌍을 추출하여 문제를 해결했을 때 어느 정도의 성능 향상이 있는지 알아본다.

  • PDF

Competitor Extraction based on Machine Learning Methods (기계학습 기반 경쟁자 자동추출 방법)

  • Lee, Chung-Hee;Kim, Hyun-Jin;Ryu, Pum-Mo;Kim, Hyun-Ki;Seo, Young-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.107-112
    • /
    • 2012
  • 본 논문은 일반 텍스트에 나타나는 경쟁 관계에 있는 고유명사들을 경쟁자로 자동 추출하는 방법에 대한 것으로, 규칙 기반 방법과 기계 학습 기반 방법을 모두 제안하고 비교하였다. 제안한 시스템은 뉴스 기사를 대상으로 하였고, 문장에 경쟁관계를 나타내는 명확한 정보가 있는 경우에만 추출하는 것을 목표로 하였다. 규칙기반 경쟁어 추출 시스템은 2개의 고유명사가 경쟁관계임을 나타내는 단서단어에 기반해서 경쟁어를 추출하는 시스템이며, 경쟁표현 단서단어는 620개가 수집되어 사용됐다. 기계학습 기반 경쟁어 추출시스템은 경쟁어 추출을 경쟁어 후보에 대한 경쟁여부의 바이너리 분류 문제로 접근하였다. 분류 알고리즘은 Support Vector Machines을 사용하였고, 경쟁어 주변 문맥 정보를 대표할 수 있는 언어 독립적 5개 자질에 기반해서 모델을 학습하였다. 성능평가를 위해서 이슈화되고 있는 핫키워드 54개에 대해서 623개의 경쟁어를 뉴스 기사로부터 수집해서 평가셋을 구축하였다. 비교 평가를 위해서 기준시스템으로 연관어에 기반해서 경쟁어를 추출하는 시스템을 구현하였고, Recall/Precision/F1 성능으로 0.119/0.214/0.153을 얻었다. 제안 시스템의 실험 결과로 규칙기반 시스템은 0.793/0.207/0.328 성능을 보였고, 기계 학습기반 시스템은 0.578/0.730/0.645 성능을 보였다. Recall 성능은 규칙기반 시스템이 0.793으로 가장 좋았고, 기준시스템에 비해서 67.4%의 성능 향상이 있었다. Precision과 F1 성능은 기계학습기반 시스템이 0.730과 0.645로 가장 좋았고, 기준시스템에 비해서 각각 61.6%, 49.2%의 성능향상이 있었다. 기준시스템에 비해서 제안한 시스템이 Recall, Precision, F1 성능이 모두 대폭적으로 향상되었으므로 제안한 방법이 효과적임을 알 수 있다.

  • PDF

Automatic Keyword Extraction using Hierarchical Graph Model Based on Word Co-occurrences (단어 동시출현관계로 구축한 계층적 그래프 모델을 활용한 자동 키워드 추출 방법)

  • Song, KwangHo;Kim, Yoo-Sung
    • Journal of KIISE
    • /
    • v.44 no.5
    • /
    • pp.522-536
    • /
    • 2017
  • Keyword extraction can be utilized in text mining of massive documents for efficient extraction of subject or related words from the document. In this study, we proposed a hierarchical graph model based on the co-occurrence relationship, the intrinsic dependency relationship between words, and common sub-word in a single document. In addition, the enhanced TextRank algorithm that can reflect the influences of outgoing edges as well as those of incoming edges is proposed. Subsequently a novel keyword extraction scheme using the proposed hierarchical graph model and the enhanced TextRank algorithm is proposed to extract representative keywords from a single document. In the experiments, various evaluation methods were applied to the various subject documents in order to verify the accuracy and adaptability of the proposed scheme. As the results, the proposed scheme showed better performance than the previous schemes.