• 제목/요약/키워드: 자동 블러 시스템

검색결과 5건 처리시간 0.027초

잡음이 있고 흐릿한 영상의 블라인드 디컨벌루션을 위한 유전 프로그래밍 기법 (A Genetic Programming Approach to Blind Deconvolution of Noisy Blurred Images)

  • ;추연호;최영규
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권1호
    • /
    • pp.43-48
    • /
    • 2014
  • 영상의 디컨벌루션은 보통 감시 시스템에서 모션 블러 (motion blur)나 초점이 맞지 않아 발생하는 블러 (out-of-focus blur) 문제를 줄이기 위해 전처리 과정에서 사용된다. 본 논문에서는 유전 프로그래밍 (Genetic Programming, GP)에 기반한 새로운 블라인드 영상 디컨벌루션 필터링 방법을 제안한다. GP 진화 과정을 통해 영상 복원을 위한 수학적 표현이 만들어지는데, 이것은 블러 영상의 특징들 사이의 관계를 최적으로 조합하여 원래 화소 값을 복원할 수 있는 추정자 함수가 된다. 이를 위해, 먼저 각 화소의 작은 이웃으로부터 특징 벡터를 만들고 추정자 함수를 학습시키는데, 이러한 GP 진화 과정을 통해 지정한 적합성 기준에 따라 유용한 정보들이 자동으로 조합된다. 개발된 함수는 훼손된 영상의 각 화소에 적용하여 원래의 화소 값을 복원하게 된다. 개발된 함수는 다양한 방법으로 훼손된 영상에 적용하여 실험하였는데, 실험 결과 제안된 방법이 기존 알고리즘에 비해 좋은 결과를 나타내는 것을 알 수 있었다.

이동식 터널 스캐닝 시스템의 이미지 품질 평가 기법의 적용성 분석 (Analysis of the application of image quality assessment method for mobile tunnel scanning system)

  • 이철희;김동구;김동규
    • 한국터널지하공간학회 논문집
    • /
    • 제26권4호
    • /
    • pp.365-384
    • /
    • 2024
  • 인력기반의 점검보다 안전하고 효율적인 자동화 점검을 위하여 스캐닝 기술 개발이 가속화되고 있다. 컴퓨터비전 기술을 활용하여 수집된 이미지로부터 시설물 손상을 자동으로 검출하는 연구도 증가하고 있다. 이미지의 픽셀 크기, 품질 및 수량은 손상 자동 검출을 위한 딥러닝이나 이미지 처리 성능에 영향을 미칠 수 있다. 본 연구는 딥러닝기반 손상 자동 검출을 위한 이동식 터널 스캐닝 시스템의 카메라 성능과 고품질의 원시 이미지 데이터 취득을 위한 기초연구로, 이미지의 품질을 정량적으로 평가하기 위한 기법을 제안하려고 한다. 40 km/h의 이동속도 모사가 가능한 패널 장치에 테스트차트를 부착하고 국제표준 ISO 12233방법으로 실내시험을 수행하였다. 기존의 이미지 품질 평가기법들을 적용하여 실내실험에서 얻어진 이미지의 품질을 평가하였다. 카메라의 셔터스피드는 이미지에 발생하는 모션블러와 밀접한 관련이 있는 것으로 판단되었다. 이미지 품질 평가 기법 중 하나인 modulation transfer function (MTF)는 이미지 품질을 객관적으로 평가할 수 있으며, 시각적 관찰과 일치하는 것으로 판단되었다.

머신러닝에 기반을 둔 사진 속 개인정보 검출 및 블러링 클라우드 서비스 (Personal Information Detection and Blurring Cloud Services Based on Machine Learning)

  • 김민정;이수영;이지영;함나연
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.152-155
    • /
    • 2019
  • 클라우드가 대중화되어 많은 모바일 유저들이 자동 백업 기능을 사용하면서 민감한 개인정보가 포함된 사진들이 무분별하게 클라우드에 업로드 되고 있다. 개인정보를 포함한 클라우드가 악의적으로 해킹 될 시, 사진에 포함된 지문, 자동차 번호판, 카드 번호 등이 유출됨에 따라 대량의 개인정보가 유출될 가능성이 크다. 이에 따라 적절한 기준에 맞게 사진 속 개인 정보 유출을 막을 수 있는 기술의 필요성이 대두되고 있다. 현재의 클라우드 시스템의 문제를 해결하고자 본 연구는 모바일 기기에서 클라우드 서버로 사진을 백업하는 과정에서 영역 검출과 블러링의 과정을 제안하고 있다. 클라우드 업로드 과정에서 사진 속의 개인 정보를 검출한 뒤 이를 블러링하여 클라우드에 저장함으로써 악의적인 접근이 행해지더라도 개인정보의 유출을 방지할 수 있다. 머신러닝과 computer vision library등을 이용하여 이미지 내에 민감한 정보를 포함하고 있는 영역을 학습된 모델을 통해 검출한 뒤, OpenCV를 이용하여 블러링처리를 진행한다 사진 속에 포함될 수 있는 생체정보인 지문은 손 영역을 검출한 뒤, 해당 영역을 블러링을 하여 업로드하고 카드번호나 자동차 번호판이 포함된 사진은 영역을 블러링한 뒤, 암호화하여 업로드 된다. 후에 필요에 따라 본인인증을 거친 후 일정기간 열람을 허용하지만 사용되지 않을 경우 삭제되도록 한다. 개인정보 유출로 인한 피해가 꾸준히 증가하고 있는 지금, 사진 속의 개인 정보를 보호하는 기술은 안전한 통신과 더불어 클라우드의 사용을 더 편리하게 할 수 있을 것으로 기대된다.

생활기기 센서를 이용한 상황인지 온톨로지 모델링 (Context-aware Ontology Modeling using by Legacy Home Appliences)

  • 이은영;민욱기;원유석;김보남
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.737-740
    • /
    • 2013
  • 오래 전부터 홈 네트워크 컴퓨팅을 위하여 많은 스마트 홈 생활기기의 개발과 함께 지능형 개인화 서비스 연구가 진행되어왔다. 그러나 실제 일상생활에서는 이미 구매한 생활기기의 긴 수명주기 때문에 건축물 신축 시 스마트 생활기기 및 관련 시스템이 설치되지 않으면 사용자는 홈네트워킹을 위한 지능형 개인화 서비스를 이용하는데 어려움이 있다. 따라서 기존(legacy) 생활기기를 사용하면서 지능형 개인화 서비스를 이용하기위해 가전기기에 부착시킬 수 있는 인에이블러(enabler)를 사용한다. 다양한 센서가 내장되어 있는 인에이블러는 각 센서로부터 취득한 데이터들을 사물웹 게이트 웨이로 전달하며 게이트웨이는 사용자의 간섭 없이 입력받은 정보를 통하여 사용자의 상황을 명확하게 파악하여 필요한 서비스를 제공한다. 이에 본 논문에서는 인에이블러의 센서를 활용하여 사용자의 다양한 상황을 자동으로 추론하여 실시간으로 적합한 서비스를 제공할 수 있는 상황인지 온톨로지 모델을 제시한다.

  • PDF

비디오 컨텐츠의 프라이버시 보호를 위한 CNN 기반 얼굴 추적 및 재식별 기술 (CNN Based Face Tracking and Re-identification for Privacy Protection in Video Contents)

  • 박태미;닌펑푸;김형원
    • 한국정보통신학회논문지
    • /
    • 제25권1호
    • /
    • pp.63-68
    • /
    • 2021
  • 최근 유튜브와 같이 영상 콘텐츠를 보거나 제작하는 것에 관한 관심이 급증하고 있습니다. 그러나 개인 정보 보호 기술이 없이 동영상을 제작하게 되면, 출연을 원하지 않는 사람들이 공개적으로 노출되어 개인 정보 보호권을 침해할 수 있습니다. 본 논문은 이러한 문제를 해결하기 위해 얼굴을 식별하여 특정한 얼굴만 화면에 나오고 그 외에 다른 얼굴들은 Gaussian blur filter를 이용하여 흐리게 하여서 초상권을 보호하는 기술을 제안합니다. 이 논문의 핵심은 실시간 비디오에서 인물의 초상권을 보호하기 위한 주요 기술인 얼굴 식별 기술의 정확도를 높이기 위한 노력입니다. 본 논문은 얼굴 식별의 정확도를 높이기 위하여 추적 알고리즘을 사용하였으며 실시간 비디오에 적용하기 위하여 알고리즘을 변경하였습니다. 이 논문에서는 추적 알고리즘이 있는 경우와 없는 경우를 비교하여 결과를 보여줍니다.