• Title/Summary/Keyword: 자동 기하보정

Search Result 69, Processing Time 0.021 seconds

On-line Automatic Geometric Correction System of Landsat Imagery (Landsat 영상의 온라인 자동 기하보정 시스템)

  • Yun, YoungBo;Hwang, TaeHyun;Cho, Seong-Ik;Park, Jong-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.15-23
    • /
    • 2004
  • In order to utilize remote sensed images effectively, it is necessary to correct geometric distortion. Geometric correction is a critical step to remove geometric distortions in satellite images. For geometric correction, Ground Control Points (GCPs) have to be chosen carefully to guarantee the quality of geocoded satellite images, digital maps, GPS surveying or other data. Traditional approach to geometric correction used GCPs requires substantial human operations. Also that is necessary much time and manpower. In this paper, we presented an on-line automatic geometric correction by constructing GCP Chip database. The Proposed on-line automatic geometric correction system is consists of four part. Input image, control the GCP Chip, revision of selected GCP, and output setting part. In conclusion, developed system reduced the processing time and energy for tedious manual geometric correction and promoted usage of Landsat imagery.

  • PDF

Integrated Automatic Pre-Processing for Change Detection Based on SURF Algorithm and Mask Filter (변화탐지를 위한 SURF 알고리즘과 마스크필터 기반 통합 자동 전처리)

  • Kim, Taeheon;Lee, Won Hee;Yeom, Junho;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.209-219
    • /
    • 2019
  • Satellite imagery occurs geometric and radiometric errors due to external environmental factors at the acquired time, which in turn causes false-alarm in change detection. These errors should be eliminated by geometric and radiometric corrections. In this study, we propose a methodology that automatically and simultaneously performs geometric and radiometric corrections by using the SURF (Speeded-Up Robust Feature) algorithm and the mask filter. The MPs (Matching Points), which show invariant properties between multi-temporal imagery, extracted through the SURF algorithm are used for automatic geometric correction. Using the properties of the extracted MPs, PIFs (Pseudo Invariant Features) used for relative radiometric correction are selected. Subsequently, secondary PIFs are extracted by generated mask filters around the selected PIFs. After performing automatic using the extracted MPs, we could confirm that geometric and radiometric errors are eliminated as the result of performing the relative radiometric correction using PIFs in geo-rectified images.

Automated Geometric Correction based on Robust Estimation with Geostationary Weather Satellite Image (강인추정 기법에 기반한 정지궤도 기상위성영상의 자동 기하보정)

  • Lee, Tae-Yoon;Ahn, Myoung-Hwan;Oh, Hyun-Jong
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.161-166
    • /
    • 2007
  • Multi-functional Transport Satellite lR(MTSAT-lR)과 같은 정지궤도 기상위성의 지상 전처리 과정에는 영상위치보정(Image navigation and registration)이 포함된다. 영상위치보정은 위성 영상의 기하학적인 왜곡을 보정하는 과정이다. 랜드마크를 이용하는 영상위치보정 과정은 랜드마크 결정과 센서 모델 추정, 리샘플링(Resampling)의 세 가지 단계로 나눌 수 있다. MTSAT-1R의 High Resolution Image Data(HiRID)는 이미 영상위치보정이 수행되었지만, 기하학적인 오차가 남아있는 영상을 포함하기도 한다. 본 연구에서는 이런 기하학적인 오차를 제거하기 위해서 강인추정 기법에 기반한 기하보정을 수행하였다. 이태윤 등 (2005)은 강인추정 기법과 Direct Linear Transformation (DLT)에 기반한 오정합 판별 방법을 제안하였다. 이 판별 방법을 적용하여 추정된 DLT로 MTSAT-1R 영상의 기하보정을 수행한 결과에는 향상된 정확도로 기하보정 된 영상 뿐만 아니라 비교적 큰 오차를 포함하는 영상도 있었다. 이를 해결하기 위해서 본 연구에서는 강인추정 기법과 Affine 변환을 이용한 방법을 적용하였다. 본 연구에서는 기준 해안선에서 추출한 1,407개의 랜드마크와 8개의 MTSAT-1R 영상을 이용하였으며,강인추정 기법에 DLT를 적용한 방법과 Affine 변환을 적용한 방법으로 자동 기하보정을 수행하여 그 결과를 비교하였다. 또한 강인추정 기볍 중 RANSAC과 MSAC의 적용 결과를 비교하여 보았다. 그 결과,DLT로 기하보정 시,본 논문에서 제안된 방법이 강인추정 기법에 DLT를 적용한 방법 보다 더 좋은 성능을 보여주었다.

  • PDF

Automated Geometric Correction of Geostationary Weather Satellite Images (정지궤도 기상위성의 자동기하보정)

  • Kim, Hyun-Suk;Lee, Tae-Yoon;Hur, Dong-Seok;Rhee, Soo-Ahm;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.297-309
    • /
    • 2007
  • The first Korean geostationary weather satellite, Communications, Oceanography and Meteorology Satellite (COMS) will be launched in 2008. The ground station for COMS needs to perform geometric correction to improve accuracy of satellite image data and to broadcast geometrically corrected images to users within 30 minutes after image acquisition. For such a requirement, we developed automated and fast geometric correction techniques. For this, we generated control points automatically by matching images against coastline data and by applying a robust estimation called RANSAC. We used GSHHS (Global Self-consistent Hierarchical High-resolution Shoreline) shoreline database to construct 211 landmark chips. We detected clouds within the images and applied matching to cloud-free sub images. When matching visible channels, we selected sub images located in day-time. We tested the algorithm with GOES-9 images. Control points were generated by matching channel 1 and channel 2 images of GOES against the 211 landmark chips. The RANSAC correctly removed outliers from being selected as control points. The accuracy of sensor models established using the automated control points were in the range of $1{\sim}2$ pixels. Geometric correction was performed and the performance was visually inspected by projecting coastline onto the geometrically corrected images. The total processing time for matching, RANSAC and geometric correction was around 4 minutes.

Automatic Registration between Multiple IR Images Using Simple Pre-processing Method and Modified Local Features Extraction Algorithm (단순 전처리 방법과 수정된 지역적 피쳐 추출기법을 이용한 다중 적외선영상 자동 기하보정)

  • Kim, Dae Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.485-494
    • /
    • 2017
  • This study focuses on automatic image registration between multiple IR images using simple preprocessing method and modified local feature extraction algorithm. The input images were preprocessed by using the median and absolute value after histogram equalization, and it could be effectively applied to reduce the brightness difference value between images by applying the similarity of extracted features to the concept of angle instead of distance. The results were evaluated using visual and inverse RMSE methods. The features that could not be achieved by the existing local feature extraction technique showed high image matching reliability and application convenience. It is expected that this method can be used as one of the automatic registration methods between multi-sensor images under specific conditions.

Automated Geometric Correction of Geostationary Weather Satellite Images (정지궤도 기상위성의 자동기하보정)

  • Kim, Hyun-Suk;Hur, Dong-Seok;Rhee, Soo-Ahm;Kim, Tae-Jung
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.70-75
    • /
    • 2007
  • 2008년 12월에 우리나라 최초의 통신해양기상위성(Communications, Oceanography and Meteorology Satellite, COMS)이 발사될 예정이다. 통신해양기상위성의 영상데이터의 기하보정을 위하여 다음과 같은 연구를 수행하였다. 기상위성은 정지궤도상에 위치하여 전지구적인 영상을 얻는다. 영상의 전지구적인 해안선은 구름 등으로 가려져서 명확한 정보를 제공할 수 없게 된다. 구름 등으로 방해되지 않는 명확한 해안선 정보를 얻기 위하여 구름 추출을 한다. 실시간으로 기상정보를 얻는 기상위성의 특성상 정합에 전체 영상을 사용하면 수행시간이 다소 소요된다. 정합시 전체 영상에서 정합을 위한 후보점 추출을 위하여 GSHHS(Global Self-consistent Hierarchical High-resolution Shoreline)의 해안선 데이터베이스를 사용하여 211 개 의 랜드마크 칩들을 구축하였다. 이때 구축된 랜드마크 칩은 실험에 사용한 GOES-9의 위치 동경 155도를 반영하여 구축하였다. 전체 영상에서 구축된 랜드마크 칩들의 위치를 중심으로 구름추출을 수행한다. 전체 211 개의 후보점 중 구름이 제거된 나머지 후보점에 대하여 정합을 수행한다. 랜드마크 칩과 위성영상 간의 정합 중 참정합과 오정합이 존재하는데 자동으로 오정합을 검출하기 위하여 강인추정기법 (RANSAC, Random Sample Consensus)을 사용한다. 이때 자동으로 판별되어 오정합이 제거된 정합결과로 최종적인 기하보정을 수행한다. 기하보정을 위한 센서모델은 GOES-9 위성의 센서특정을 고려하여 개발되었다. 정합 및 RANSAC결과로 얻어진 기준점으로 정밀 센서모델을 수립하여 기하보정을 실시하였다. 이때 일련의 수행과정을 통신해양기상위성의 실시간 처리요구사항에 맞도록 속도를 최적화하여 진행되도록 개발하였다.

  • PDF

Automatic Image-to-Image Registration of Middle- and Low-resolution Satellite Images Using Scale-Invariant Feature Transform Technique (SIFT 기법을 이용한 중.저해상도 위성영상간의 자동 기하보정)

  • Han, Dong-Yeob;Kim, Dae-Sung;Lee, Jae-Bin;Oh, Jae-Hong;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.5
    • /
    • pp.409-416
    • /
    • 2006
  • To use image data obtained from different sensors and different techniques, the preprocessing step that registers them in a common coordinate system is needed. For this purpose, we developed the methodology to register middle- and low-resolution satellite images automatically. Firstly, candidate matching points were extracted using the Harris and Harris-affine algorithm. Secondly, we used the correlation coefficient, normalized correlation coefficient and SIFT algorithm to detect conjugate matching points from candidates. Then, to test the feasibility of approaches, we applied the developed methodology to various kinds of satellite images and compared results. The results clearly demonstrate that the methology using the SIFT is appropriate to register these multi-resolution satellite images automatically, compared with the classical cross-correlation.

Iterative Precision Geometric Correction for High-Resolution Satellite Images (고해상도 위성영상의 반복 정밀 기하보정)

  • Son, Jong-Hwan;Yoon, Wansang;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.431-447
    • /
    • 2021
  • Recently, the use of high-resolution satellites is increasing in many areas. In order to supply useful satellite images stably, it is necessary to establish automatic precision geometric correction technic. Geometric correction is the process that corrected geometric errors of satellite imagery based on the GCP (Ground Control Point), which is correspondence point between accurate ground coordinates and image coordinates. Therefore, in the automatic geometric correction process, it is the key to acquire high-quality GCPs automatically. In this paper, we proposed iterative precision geometry correction method. we constructed an image pyramid and repeatedly performed GCP chip matching, outlier detection, and precision sensor modeling in each layer of the image pyramid. Through this method, we were able to acquire high-quality GCPs automatically. we then improved the performance of geometric correction of high-resolution satellite images. To analyze the performance of the proposed method, we used KOMPSAT-3 and 3A Level 1R 8 scenes. As a result of the experiment, the proposed method showed the geometric correction accuracy of 1.5 pixels on average and a maximum of 2 pixels.

Intelligent Pattern Matching Based on Geometric Features for Machine Vision Inspection (머신비전검사를 위한 기하학적 특징 기반 지능 패턴 정합)

  • Moon Soon-Hwan;Kim Gyung-Bum;Kim Tae-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.6
    • /
    • pp.1-8
    • /
    • 2006
  • This paper presents an intelligent pattern matching method that can be used to acquire the reliable calibration data for automatic PCB pattern inspection. The inaccurate calibration data is often acquired by geometric pattern variations and selecting an inappropriate model manual. It makes low the confidence of inspection and also the inspection processing time has been delayed. In this paper, the geometric features of PCB patterns are utilized to calculate the accurate calibration data. An appropriate model is selected automatically based on the geometric features, and then the calibration data to be invariant to the geometric variations(translation, rotation, scaling) is calculated. The method can save the inspection time unnecessary by eliminating the need for manual model selection. As the result, it makes a fast, accurate and reliable inspection of PCB patterns.

  • PDF

Development of Preprocessing System for Automatic Geometric Correction of Images Acquired by an UAV (무인항공기 획득 영상의 자동 기하보정을 위한 전처리 시스템)

  • Shin, Won-Jae;Lee, Min-Seob;Kim, Sung-Hyun;Lee, Yong-Tae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.11a
    • /
    • pp.159-160
    • /
    • 2017
  • 본 논문에서는 무인기를 통해 수집한 영상을 과학적 분석 및 매핑이 가능한 영상으로 산출하는 자동 기하보정 시스템을 제안한다. 해당 시스템은 무인기를 활용하여 상시적으로 재난 상황을 촬영하여 감시 및 분석을 하며, 무인기에 탑재된 다중복합 센서 데이터의 실시간 처리 분석을 통해 국지적 홍수 재난의 감지 예측 및 상황대응을 지원하고, 통합경보 시스템과 연동하여 대국민 재난 정보를 제공하는 서비스를 위한 요소 기술이다. 현재 본 서비스를 제공할 수 있는 Front to End 시스템이 개발 완료되어 실제 필드에서의 재난 감시 및 예측 성능을 검증하기 위한 필드 테스트를 준비 중에 있다. 이에 본 논문에서는 현재 구축하고 있는 홍수 재난 관리 플랫폼에 대한 내용을 간단히 소개하고, 중요한 기능중 하나인 무인기 촬영 영상의 자동기하보정 시스템에 대해서 논한다.

  • PDF