2014년 서울시는 시민의 목소리에 신속한 응대를 목표로 '서울특별시 응답소' 서비스를 시작하였다. 접수된 민원은 내용을 바탕으로 카테고리 확인 및 담당부서로 분류 되는데, 이 부분을 자동화시킬 수 있다면 시간 및 인력 비용이 감소될 것이다. 본 연구는 2010년 6월 1일부터 2017년 5월 31일까지 7년치 민원 사례 17,700건의 데이터를 수집하여, 최근 화두가 되고 있는 XGBoost 모델을 기존 RandomForest 모델과 비교하여 한국어 텍스트 분류의 적합성을 확인하였다. 그 결과 RandomForest에 대비 XGBoost의 정확도가 전반적으로 높게 나타났다. 동일한 표본을 활용하여 업 샘플링과 다운 샘플링 시행 후에는 RandomForest의 정확도가 불안정하게 나타난 반면, XGBoost는 전반적으로 안정적인 정확도를 보였다.
증가하는 사이버공격에 대응하기 위하여 머신러닝을 적용한 자동화된 침입탐지기술이 연구되고 있다. 최근 연구결과에 따르면, 순환형 학습모델을 적용한 침입탐지기술이 높은 탐지성능을 보여주는 것으로 확인되었다. 하지만 단순한 순환형 모델을 적용하는 것은 통신이 중첩된 환경일수록 연관된 통신의 특성을 반영하기 어려워 탐지성능이 저하될 수 있다. 본 논문에서는 이 같은 문제점을 해결하고자 세션관리모듈을 설계하여 LSTM(Long Short-Term Memory) 순환형 모델에 적용하였다. 실험을 위하여 CSE-CIC-IDS 2018 데이터 셋을 사용하였으며, 정상통신비율을 증가시켜 악성통신의 연관성을 낮추었다. 실험결과 통신연관성을 파악하기 힘든 환경에서도 제안하는 모델은 높은 탐지성능을 유지할 수 있음을 확인하였다.
Machine learning (ML) is a method of fitting given data to a mathematical model to derive insights or to predict. In the age of big data, where the amount of available data increases exponentially due to the development of information technology and smart devices, ML shows high prediction performance due to pattern detection without bias. The feature engineering that generates the features that can explain the problem to be solved in the ML process has a great influence on the performance and its importance is continuously emphasized. Despite this importance, however, it is still considered a difficult task as it requires a thorough understanding of the domain characteristics as well as an understanding of source data and the iterative procedure. Therefore, we propose methods to apply deep learning for solving the complexity and difficulty of feature extraction and improving the performance of ML model. Unlike other techniques, the most common reason for the superior performance of deep learning techniques in complex unstructured data processing is that it is possible to extract features from the source data itself. In order to apply these advantages to the business problems, we propose deep learning based methods that can automatically extract features from transaction data or directly predict and classify target variables. In particular, we applied techniques that show high performance in existing text processing based on the structural similarity between transaction data and text data. And we also verified the suitability of each method according to the characteristics of transaction data. Through our study, it is possible not only to search for the possibility of automated feature extraction but also to obtain a benchmark model that shows a certain level of performance before performing the feature extraction task by a human. In addition, it is expected that it will be able to provide guidelines for choosing a suitable deep learning model based on the business problem and the data characteristics.
머신러닝과 딥러닝 등 인공지능 기술의 급속한 발전은 행정-정책 분야에도 영향을 확대하고 있다. 이 논문은 데이터분석과 알고리즘의 발전으로 자동화된 구성과 운용을 설계하는 인공지능 시대의 정책의사결정에 관한 탐색적 연구이다. 이 연구의 의의는 정책의사결정에서의 주요 연구 중 하나인 정책 문제의 문제구조화를 기반으로 하여, 문제정의가 잘 구조화된 정도에 따른 유형으로 이론적 틀을 구성하여 성공과 실패 사례를 구분하고 분석해서 시사점을 도출하였다. 즉 문제구조화가 어려운 유형일수록 인공지능을 활용한 의사결정의 실패 혹은 부작용의 우려가 크다는 것이다. 또한 알고리즘의 중립성여부에 대한 우려도 제시하였다. 정책적 제언으로는 우리나라 인공지능 추진체계구축 시 기술적 측면과 사회적 측면의 전문가들이 전문적으로 역할을 하는 소위원회를 병렬적으로 두고 이 소위원회들이 종합적, 융합적으로도 작동할 수 있는 운영의 묘를 발휘하는 거버넌스 추진체계 구축이 필요함을 제시하고 있다.
최근 산업 분야에서는 공장 자동화 뿐만 아니라 장애 진단/예측을 통해 고장/사고를 사전에 방지하여 생산량을 극대화하기 위한 연구가 진행되고 있으며, 이를 구성하기 위해 많은 양의 데이터 축적을 위한 클라우드 기술, 데이터 처리를 위한 빅 데이터 기술, 그리고 데이터 분석을 쉽게 진행하기 위한 AI(Artificial Intelligence)기술이 도입되고 있다. 또한 최근에는 장애 진단/예측의 발전으로 인해 설비 유지보수(PM: Productive Maintenance) 방식도 정기적으로 설비를 유지보수 하는 방식인 TBM(Time Based Maintenance)에서 설비 상태에 따라 유지보수 하는 방식인 CBM(Condition Based Maintenance)을 조합하는 방식으로 발전하고 있다. CBM 기반 유지보수를 수행하기 위하여 설비의 상태(condition)의 정의와 분석이 필요하다. 따라서 본 논문에서는 머신 러닝(Machine Learning) 기반의 장애 진단을 위한 시스템 및 데이터 모델(Data Model)을 제안하며, 이를 기반으로 장애를 사전 예측한 사례를 제시하고자 한다.
흉부 X-ray 영상은 폐와 심장을 검사하는 방사선 검사이며 특히, 폐 질환을 진단하는 데 널리 사용되고 있다. 이러한 흉부 X-ray의 품질은 의사의 진단에 영향을 줄 수 있으므로 품질을 평가하는 과정이 필수적으로 거쳐야 하는데, 이 과정은 영상의학과 전문의의 주관이 개입될 수 있고, 수작업으로 이루어지기 때문에 많은 시간과 비용이 소모된다. 또한, 이러한 품질평가는 X-ray 영상의 특징과 사용 목적에 따라 일반적인 품질평가와는 다른 평가 요소가 필요하다. 따라서 본 논문에서는 X-ray 영상에서 검출되는 장기의 해상도, ,해부학적인 구조, 균형 등을 고려하여 임상 현장에서 사용되는 흉부 X-ray 영상 화질 평가 가이드라인을 적용하여 품질요소를 5가지(인공음영, 포함범위, 환자자세, 흡기정도, 그리고 투과상태)로 나누고 이를 자동화하는 도구를 제안한다. 제안하는 도구는 수작업으로 품질평가를 진행하는 본래의 방식 대비 소요 시간과 비용을 줄여주고, 더 나아가 흉부 X-ray를 이용한 학습 모델 개발에 높은 품질의 학습데이터를 선별하는 과정에도 사용될 수 있다.
스마트 플랜트 발전에 있어서 빅데이터 분석과 인공지능은 중요한 역할을 한다. 본 연구에서는 플랜트 데이터를 위한 빅데이터 플랫폼과 인공지능 기반 플랜트 유지 관리를 위한 'AutoML 플랫폼'을 개발하였다. 빅데이터 플랫폼은 하둡, 스파크, 카프카를 활용하여 플랜트에서 발생하는 대용량의 데이터를 수집, 처리, 적재하는 플랫폼이다. AutoML 플랫폼은 설비의 예지보전 및 공정 최적화를 위한 예측 모델을 구축하는 머신러닝 자동화 시스템이다. 위 플랫폼은 기존 플랜트 운영 정보 시스템과의 호환성을 고려하여 데이터 파이프라인을 구성하고, 웹 기반 GUI를 통해 작업자의 접근성과 편의성을 향상하였으며, 데이터 처리와 학습 알고리즘에 사용자 정의 모듈을 탑재하는 기능을 통해 유연성을 증대시켰다. 본 논문은 국내 정유회사의 특정 공정을 대상으로 플랫폼을 실제 운영해보았고, 이를 통해 스마트 플랜트를 위한 효과적인 데이터 활용 플랫폼 사례를 제시한다.
CAPTCHA 시스템은 스팸이나 로봇에 의한 자동 가입, 계정 생성 방지도구로써 인간의 우수한 가독성을 통해 특정 언어 또는 그림을 해독할 수 있는 특성을 이용한 것으로 일반적으로 컴퓨터 프로그램이 해독하기 어려운 기호, 글자 등을 재입력하도록 하여 스팸을 위한 자동화 도구 등을 무력화 시키는 보안 기술이다. 하지만 기존에 존재하였던 텍스트 기반의 시스템은 웹봇이나 머신 러닝등을 통하여 쉽게 통과할 수 있는 단점을 나타냈다. 우리는 이러한 단점을 보완하고자 새로운 이미지 기반의 CAPTCHA 시스템을 제안하였다. 제안된 시스템은 일반적인 사진에서 부분 이미지를 출력, 무작위 회전을 가하여 사용자에게 올바른 교정을 요하는 시스템이었다. 본 논문에서는 일반적인 사진에서 출력되는 부분 이미지의 형태를 다각형으로 추출하여, 사용자에게 좀 더 인식률을 높일 수 있는 서브 이미지의 형태를 찾고, 좀 더 효과적이고 실용적일수 있는 CAPTCHA 시스템을 제안하고자 한다. 본 논문에서 제공하는 다각형의 형태는 정사각형, 정오각형, 정육각형, 정칠각형 그리고 정팔각형이다. 총 5가지 형태의 다각형 중에서 사용자에게 가장 효과적인 다각형을 실험을 통하여 찾을 것이다.
안드로이드 프레임워크는 단 한번의 권한 허용을 통해 앱이 사용자의 정보를 자유롭게 이용할 수 있으며, 유출되는 데이터가 개인정보임을 식별하기 어렵다는 문제가 있다. 따라서 본 논문에서는 어플리케이션을 통해 유출되는 데이터를 분석하여, 해당 데이터가 실제로 개인정보에 해당하는 것인지를 파악하는 기준을 제시한다. 이를 위해 우리는 제어 흐름 그래프를 기반으로 소스와 싱크를 추출하며, 소스에서 싱크까지의 흐름이 존재하는 경우 사용자의 개인정보를 유출하는지 확인한다. 이 과정에서 우리는 구글에서 제공하는 위험한 권한 정보를 기준으로 개인정보와 직결되는 소스와 싱크를 선별하며, 동적분석 툴을 통해 각 API에 대한 정보를 후킹한다. 후킹되는 데이터를 통해 사용자는 해당 어플리케이션이 실제로 개인정보를 유출한다면 어떤 개인정보를 유출하는지 여부를 파악할 수 있다. 우리는 툴을 최신 버전의 API에 적용하기 위해 머신러닝을 통해 최신 버전의 안드로이드의 소스와 싱크를 분류하였으며, 이를 통해 86%의 정확도로 최신 배포 버전인 9.0 안드로이드의 API를 분류하였다. 또한 툴은 2,802개의 APK를 통해 평가되었으며, 개인정보를 유출하는 850개의 APK를 탐지하였다.
K-POP 시장은 문화를 넘어 외교, 환경 운동 등 사회 전반에 미치는 영향력이 지대해지고 있다. 이에 따라 아이돌의 성공 요인을 알아내고자 음원, 음반 등 전통적 데이터를 활용하여 머신러닝 기반으로 다양한 논문들이 수행되고 있다. 하지만, 기존의 선행 연구는 최근 아이돌의 인지도에 미치는 인스타그램 릴스, 유튜브 쇼츠, 틱톡, 트위터 등과 같은 뉴미디어 플랫폼의 영향을 반영하지 못했다는 한계점이 있다. 따라서 기존의 연구로는 매일 변화하는 미디어 트렌드를 고려하지 못하여 최근 아이돌 성공 요인의 인과관계를 뚜렷하게 밝히는데 어려움이 있었다. 이러한 문제점을 해결하기 위해, 본 논문은 아이돌 관련 데이터의 수집 시스템과 분석 방법론을 제안한다. 아이돌 데이터의 특이성을 반영한 컨테이너 기반 실시간 데이터 수집 자동화 시스템을 개발해, 아이돌 데이터 수집의 안정성과 확장성을 확보하고 K-Means 클러스터링 기반 이상치 탐지 모델을 통해 성공 아이돌 군집을 비교, 분석한다. 그 결과, 성별, 앨범 발매 시기 후 성공 시점, 뉴미디어와의 연관성 등 성공 아이돌들의 공통점을 파악할 수 있었다. 이를 통해, 최종적으로 각 아이돌별, 앨범 형태별, 컴백 시기에 따른 최적 컴백 프로모션을 기획해 아이돌의 성공 가능성을 증진할 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.