• Title/Summary/Keyword: 자동화된 머신러닝

Search Result 69, Processing Time 0.027 seconds

LSTM Model based on Session Management for Network Intrusion Detection (네트워크 침입탐지를 위한 세션관리 기반의 LSTM 모델)

  • Lee, Min-Wook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.1-7
    • /
    • 2020
  • With the increase in cyber attacks, automated IDS using machine learning is being studied. According to recent research, the IDS using the recursive learning model shows high detection performance. However, the simple application of the recursive model may be difficult to reflect the associated session characteristics, as the overlapping session environment may degrade the performance. In this paper, we designed the session management module and applied it to LSTM (Long Short-Term Memory) recursive model. For the experiment, the CSE-CIC-IDS 2018 dataset is used and increased the normal session ratio to reduce the association of mal-session. The results show that the proposed model is able to maintain high detection performance even in the environment where session relevance is difficult to find.

Comparing the Performance of a Deep Learning Model (TabPFN) for Predicting River Algal Blooms with Varying Data Composition (데이터 구성에 따른 하천 조류 예측 딥러닝 모형 (TabPFN) 성능 비교)

  • Hyunseok Yang;Jungsu Park
    • Journal of Wetlands Research
    • /
    • v.26 no.3
    • /
    • pp.197-203
    • /
    • 2024
  • The algal blooms in rivers can negatively affect water source management and water treatment processes, necessitating continuous management. In this study, a multi-classification model was developed to predict the concentration of chlorophyll-a (chl-a), one of the key indicators of algal blooms, using Tabular Prior Fitted Networks (TabPFN), a novel deep learning algorithm known for its relatively superior performance on small tabular datasets. The model was developed using daily observation data collected at Buyeo water quality monitoring station from January 1, 2014, to December 31, 2022. The collected data were averaged to construct input data sets with measurement frequencies of 1 day, 3 days, 6 days, 12 days. The performance comparison of the four models, constructed with input data on observation frequencies of 1 day, 3 days, 6 days, and 12 days, showed that the model exhibits stable performance even when the measurement frequency is longer and the number of observations is smaller. The macro average for each model were analyzed as follows: Precision was 0.77, 0.76, 0.83, 0.84; Recall was 0.63, 0.65, 0.66, 0.74; F1-score was 0.67, 0.69, 0.71, 0.78. For the weighted average, Precision was 0.76, 0.77, 0.81, 0.84; Recall was 0.76, 0.78, 0.81, 0.85; F1-score was 0.74, 0.77, 0.80, 0.84. This study demonstrates that the chl-a prediction model constructed using TabPFN exhibits stable performance even with small-scale input data, verifying the feasibility of its application in fields where the input data required for model construction is limited.

A fundamental study on the automation of tunnel blasting design using a machine learning model (머신러닝을 이용한 터널발파설계 자동화를 위한 기초연구)

  • Kim, Yangkyun;Lee, Je-Kyum;Lee, Sean Seungwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.431-449
    • /
    • 2022
  • As many tunnels generally have been constructed, various experiences and techniques have been accumulated for tunnel design as well as tunnel construction. Hence, there are not a few cases that, for some usual tunnel design works, it is sufficient to perform the design by only modifying or supplementing previous similar design cases unless a tunnel has a unique structure or in geological conditions. In particular, for a tunnel blast design, it is reasonable to refer to previous similar design cases because the blast design in the stage of design is a preliminary design, considering that it is general to perform additional blast design through test blasts prior to the start of tunnel excavation. Meanwhile, entering the industry 4.0 era, artificial intelligence (AI) of which availability is surging across whole industry sector is broadly utilized to tunnel and blasting. For a drill and blast tunnel, AI is mainly applied for the estimation of blast vibration and rock mass classification, etc. however, there are few cases where it is applied to blast pattern design. Thus, this study attempts to automate tunnel blast design by means of machine learning, a branch of artificial intelligence. For this, the data related to a blast design was collected from 25 tunnel design reports for learning as well as 2 additional reports for the test, and from which 4 design parameters, i.e., rock mass class, road type and cross sectional area of upper section as well as bench section as input data as well as16 design elements, i.e., blast cut type, specific charge, the number of drill holes, and spacing and burden for each blast hole group, etc. as output. Based on this design data, three machine learning models, i.e., XGBoost, ANN, SVM, were tested and XGBoost was chosen as the best model and the results show a generally similar trend to an actual design when assumed design parameters were input. It is not enough yet to perform the whole blast design using the results from this study, however, it is planned that additional studies will be carried out to make it possible to put it to practical use after collecting more sufficient blast design data and supplementing detailed machine learning processes.

A Study on Development Environments for Machine Learning (머신러닝 자동화를 위한 개발 환경에 관한 연구)

  • Kim, Dong Gil;Park, Yong-Soon;Park, Lae-Jeong;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.6
    • /
    • pp.307-316
    • /
    • 2020
  • Machine learning model data is highly affected by performance. preprocessing is needed to enable analysis of various types of data, such as letters, numbers, and special characters. This paper proposes a development environment that aims to process categorical and continuous data according to the type of missing values in stage 1, implementing the function of selecting the best performing algorithm in stage 2 and automating the process of checking model performance in stage 3. Using this model, machine learning models can be created without prior knowledge of data preprocessing.

Credit Card Fraud Detection based on Boosting Algorithm (부스팅 알고리즘 기반 신용 카드 이상 거래 탐지)

  • Lee Harang;Kim Shin;Yoon Kyoungro
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.621-623
    • /
    • 2023
  • 전자금융거래 시장이 활발해지며 이에 따라 신용 카드 이상 거래가 증가하고 있다. 따라서 많은 금융 기관은 신용 카드 이상 거래 탐지 시스템을 사용하여 신용 카드 이상 거래를 탐지하고 개인 피해를 줄이는 등 소비자를 보호하기 위해 큰 노력을 하고 있으며, 이에 따라 높은 정확도로 신용 카드 이상 거래를 탐지할 수 있는 실시간 자동화 시스템에 대한 개발이 요구되었다. 이에 본 논문에서는 머신러닝 기법 중 부스팅 알고리즘을 사용하여 더욱 정확한 신용 카드 이상 거래 탐지 시스템을 제안하고자 한다. XGBoost, LightGBM, CatBoost 부스팅 알고리즘을 사용하여 보다 정확한 신용 카드 이상 거래 탐지 시스템을 개발하였으며, 실험 결과 평균적으로 정밀도 99.95%, 재현율 99.99%, F1-스코어 99.97%를 취득하여 높은 신용 카드 이상 거래 탐지 성능을 보여주는 것을 확인하였다.

KubEVC-Agent : Kubernetes Edge Vision Cluster Agent for Optimal DNN Inference and Operation (KubEVC-Agent : 머신러닝 추론 엣지 컴퓨팅 클러스터 관리 자동화 시스템)

  • Moohyun Song;Kyumin Kim;Jihun Moon;Yurim Kim;Chaewon Nam;Jongbin Park;Kyungyong Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.6
    • /
    • pp.293-301
    • /
    • 2023
  • With the advancement of artificial intelligence and its various use cases, accessing it through edge computing environments is gaining traction. However, due to the nature of edge computing environments, efficient management and optimization of clusters distributed in different geographical locations is considered a major challenge. To address these issues, this paper proposes a centralization and automation tool called KubEVC-Agent based on Kubernetes. KubEVC-Agent centralizes the deployment, operation, and management of edge clusters and presents a use case of the data transformation for optimizing intra-cluster communication. This paper describes the components of KubEVC-Agent, its working principle, and experimental results to verify its effectiveness.

A Method of Machine Learning-based Defective Health Functional Food Detection System for Efficient Inspection of Imported Food (효율적 수입식품 검사를 위한 머신러닝 기반 부적합 건강기능식품 탐지 방법)

  • Lee, Kyoungsu;Bak, Yerin;Shin, Yoonjong;Sohn, Kwonsang;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.139-159
    • /
    • 2022
  • As interest in health functional foods has increased since COVID-19, the importance of imported food safety inspections is growing. However, in contrast to the annual increase in imports of health functional foods, the budget and manpower required for inspections for import and export are reaching their limit. Hence, the purpose of this study is to propose a machine learning model that efficiently detects unsuitable food suitable for the characteristics of data possessed by government offices on imported food. First, the components of food import/export inspections data that affect the judgment of nonconformity were examined and derived variables were newly created. Second, in order to select features for the machine learning, class imbalance and nonlinearity were considered when performing exploratory analysis on imported food-related data. Third, we try to compare the performance and interpretability of each model by applying various machine learning techniques. In particular, the ensemble model was the best, and it was confirmed that the derived variables and models proposed in this study can be helpful to the system used in import/export inspections.

The Prediction of Survival of Breast Cancer Patients Based on Machine Learning Using Health Insurance Claim Data (건강보험 청구 데이터를 활용한 머신러닝 기반유방암 환자의 생존 여부 예측)

  • Doeggyu Lee;Kyungkeun Byun;Hyungdong Lee;Sunhee Shin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.2
    • /
    • pp.1-9
    • /
    • 2023
  • Research using AI and big data is also being actively conducted in the health and medical fields such as disease diagnosis and treatment. Most of the existing research data used cohort data from research institutes or some patient data. In this paper, the difference in the prediction rate of survival and the factors affecting survival between breast cancer patients in their 40~50s and other age groups was revealed using health insurance review claim data held by the HIRA. As a result, the accuracy of predicting patients' survival was 0.93 on average in their 40~50s, higher than 0.86 in their 60~80s. In terms of that factor, the number of treatments was high for those in their 40~50s, and age was high for those in their 60~80s. Performance comparison with previous studies, the average precision was 0.90, which was higher than 0.81 of the existing paper. As a result of performance comparison by applied algorithm, the overall average precision of Decision Tree, Random Forest, and Gradient Boosting was 0.90, and the recall was 1.0, and the precision of multi-layer perceptrons was 0.89, and the recall was 1.0. I hope that more research will be conducted using machine learning automation(Auto ML) tools for non-professionals to enhance the use of the value for health insurance review claim data held by the HIRA.

An Exploratory Study on Policy Decision Making with Artificial Intelligence: Applying Problem Structuring Typology on Success and Failure Cases (인공지능을 활용한 정책의사결정에 관한 탐색적 연구: 문제구조화 유형으로 살펴 본 성공과 실패 사례 분석)

  • Eun, Jong-Hwan;Hwang, Sung-Soo
    • Informatization Policy
    • /
    • v.27 no.4
    • /
    • pp.47-66
    • /
    • 2020
  • The rapid development of artificial intelligence technologies such as machine learning and deep learning is expanding its impact in the public administrative and public policy sphere. This paper is an exploratory study on policy decision-making in the age of artificial intelligence to design automated configuration and operation through data analysis and algorithm development. The theoretical framework was composed of the types of policy problems according to the degree of problem structuring, and the success and failure cases were classified and analyzed to derive implications. In other words, when the problem structuring is more difficult than others, the greater the possibility of failure or side effects of decision-making using artificial intelligence. Also, concerns about the neutrality of the algorithm were presented. As a policy suggestion, a subcommittee was proposed in which experts in technical and social aspects play a professional role in establishing the AI promotion system in Korea. Although the subcommittee works independently, it suggests that it is necessary to establish governance in which the results of activities can be synthesized and integrated.

A study on the optimization of tunnel support patterns using ANN and SVR algorithms (ANN 및 SVR 알고리즘을 활용한 최적 터널지보패턴 선정에 관한 연구)

  • Lee, Je-Kyum;Kim, YangKyun;Lee, Sean Seungwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.617-628
    • /
    • 2022
  • A ground support pattern should be designed by properly integrating various support materials in accordance with the rock mass grade when constructing a tunnel, and a technical decision must be made in this process by professionals with vast construction experiences. However, designing supports at the early stage of tunnel design, such as feasibility study or basic design, may be very challenging due to the short timeline, insufficient budget, and deficiency of field data. Meanwhile, the design of the support pattern can be performed more quickly and reliably by utilizing the machine learning technique and the accumulated design data with the rapid increase in tunnel construction in South Korea. Therefore, in this study, the design data and ground exploration data of 48 road tunnels in South Korea were inspected, and data about 19 items, including eight input items (rock type, resistivity, depth, tunnel length, safety index by tunnel length, safety index by rick index, tunnel type, tunnel area) and 11 output items (rock mass grade, two items for shotcrete, three items for rock bolt, three items for steel support, two items for concrete lining), were collected to automatically determine the rock mass class and the support pattern. Three machine learning models (S1, A1, A2) were developed using two machine learning algorithms (SVR, ANN) and organized data. As a result, the A2 model, which applied different loss functions according to the output data format, showed the best performance. This study confirms the potential of support pattern design using machine learning, and it is expected that it will be able to improve the design model by continuously using the model in the actual design, compensating for its shortcomings, and improving its usability.