• 제목/요약/키워드: 자동화된 머신러닝

검색결과 69건 처리시간 0.027초

머신러닝기반의 지도학습과 분류 알고리즘을 적용한 웹쉘 탐지시스템(MWSDS)제안 연구 (Proposal and empirical study of web shell detection system (MWSDS) applying machine learning-based supervised learning and classification)

  • 김기환;이상도;신용태
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.49-50
    • /
    • 2024
  • 본 논문에서는 웹쉘 악성코드를 정확하게 분류하고, 빠른시간안에 자동으로 웹쉘 분류 및 분석을 통하여 웹쉘을 탐지하기 위하여 인공지능 머신러닝 기반의 Supervised AI ML 및 Classification 알고리즘을 적용하여 빠른 시간안에 분류, 정확한 분석을 통하여 자동화된 탐지시스템인 MWSDS를 제안하고 웹쉘 실험 데이터를 통하여 실증하였다. 본제안의 경우 웹쉘악성코드 공격에 대한 대응뿐만아니라 관리적인 정보보호 체계수립을 통하여 보다 효과적이며, 지속적으로 대응할 수 있을 것으로 전망된다.

  • PDF

사람 성격 요소에 따른 위치 방문 선호도 예측의 자동화 시스템 (The Automated System for Location Visiting Preference Prediction with Personality Factors)

  • 송하윤;정지현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.935-938
    • /
    • 2021
  • 데이터 베이스에 저장된 사용자의 위치, 성격정보를 자동으로 받아서 머신러닝으로 회귀분석하여 방문 장소에 대한 선호도를 예측한다. 사람의 성격 요소로는 BFF 와 다른 기본 요소들을 사용하였다. 이를 위하여 자동화된 시스템을 구성하였고 위치 방문 선호도를 예측하기 위한 머신러닝 기법으로는 앙상블기법을 사용하였다. 예측 결과는 장소 카테고리별로 방문 선호도가 나타나고 이를 사용자 별로 나누어 저장할 예정이다. 데이터의 양이 많아지면서 나타나는 문제들을 해결하여 향후 연구에 도움이 될 것이다.

인공지능 기반의 자동화된 통합보안관제시스템 모델 연구 (A Study on Artificial Intelligence-based Automated Integrated Security Control System Model)

  • 남원식;조한진
    • 스마트미디어저널
    • /
    • 제13권3호
    • /
    • pp.45-52
    • /
    • 2024
  • 오늘날 점점 증가하는 위협 환경에서는 보안 이벤트에 대한 신속하고 효과적인 탐지 및 대응이 필수적이다. 이러한 문제를 해결하기 위해 많은 기업과 조직에서는 다양한 보안관제시스템을 도입하여 보안 위협에 대응하고 있다. 그러나 기존 보안관제시스템은 보안 이벤트의 복잡성과 다양한 특성으로 인해 어려움을 겪고 있다. 본 연구에서는 인공지능 기반의 자동화된 통합보안관제시스템 모델을 제안하였다. 인공지능 기술인 딥러닝을 기반으로 하여 다양한 보안 이벤트에 대해 효과적인 탐지와 이를 처리하는 기능들을 제공한다. 이를 위해 모델은 기존의 보안관제시스템 한계를 극복하기 위하여 다양한 인공지능 알고리즘과 머신러닝 방법을 적용한다. 제안된 모델은 운영자의 업무량을 줄이고 효율적인 운영을 보장하며 보안 위협에 대한 신속한 대응을 지원하게 될 것이다.

머신러닝을 이용한 빅데이터 품질진단 자동화에 관한 연구 (A Study on Automation of Big Data Quality Diagnosis Using Machine Learning)

  • 이진형
    • 한국빅데이터학회지
    • /
    • 제2권2호
    • /
    • pp.75-86
    • /
    • 2017
  • 본 연구에서는 빅데이터의 품질을 진단하는 방법을 자동화하는 방법을 제안하고 있다. 빅데이터의 품질진단을 자동화해야 하는 이유는 4차 산업혁명이 이슈화 되면서 과거보다 더 많은 볼륨의 데이터를 발생시키고 이 데이터들을 활용 하려는 요구가 증가하기 때문이다. 데이터는 급증하지만 데이터의 품질을 진단하기 위해 많은 시간이 소비된다면 데이터를 활용하기 위해 많은 시간이 걸리거나 데이터의 품질이 낮아질 수 있다. 그러면 이러한 낮은 품질의 데이터로부터 의사결정이나 예측을 한다면 그 결과 또한 잘못된 방향을 제시할 것이다. 이러한 문제를 해결하기 위해 많은 데이터를 신속하게 진단하고 개선할 수 있는 머신러닝 이용한 빅데이터 품질 향상을 위한 진단을 자동화 할 수 있는 모델을 개발하였다. 머신러닝을 이용하여 도메인 분류 작업을 자동화하여 도메인 분류 작업 시 발생할 수 있는 오류를 예방하고 작업 시간을 단축시켰다. 연구 결과를 토대로 데이터 변환의 중요성, 학습되지 않은 데이터에 대한 학습 시킬 수 있는 방안 모색, 도메인별 분류 모델을 개발에 대한 연구를 지속적으로 진행한다면 빅데이터를 활용하기 위한 데이터 품질 향상에 기여할 수 있을 것이다.

  • PDF

텍스트 분류 자동화를 위한 AutoML 웹 플랫폼 개발 (Development of an AutoML Web Platform for Text Classification Automation)

  • 송하윤;강전성;박범준;김준영;전광우;윤준원;정현준
    • 정보처리학회 논문지
    • /
    • 제13권10호
    • /
    • pp.537-544
    • /
    • 2024
  • 인공지능과 머신러닝 기술의 급격한 발전은 다양한 산업 분야에 혁신을 일으키고 있으며, 특히 자연어 처리(NLP) 기술은 텍스트 데이터 분석 및 처리에 새로운 가능성을 제공하고 있다. 텍스트 분류 모델을 효과적으로 개발하려면 데이터 탐색, 전처리, 특징 추출, 모델 선택, 하이퍼파라미터 튜닝, 성능 평가 등의 복잡한 단계를 거쳐야 하며, 이는 많은 시간과 전문 지식을 요구한다. 자동화된 머신러닝(AutoML)은 이러한 과정을 자동화하여 비전문가도 고성능 모델을 쉽게 생성할 수 있도록 돕는다. 그러나 기존 AutoML 도구는 주로 정형 데이터에 특화되어 있어, 비정형 텍스트 데이터 처리에는 전처리와 특징 추출 과정에서 수작업이 필요하다. 본 연구에서는 이러한 한계를 해결하기 위해 텍스트 전처리, 단어 임베딩, 모델 학습 및 평가 과정을 자동화하는 웹 기반 AutoML 플랫폼을 개발하였다. 이 플랫폼은 사용자가 텍스트 데이터를 업로드하면 최적의 머신러닝 모델을 자동으로 생성하고 성능을 시각적으로 제공함으로써 텍스트 분류 작업의 효율성을 크게 향상시킨다. 다양한 텍스트 분류 데이터셋을 활용한 실험 결과, 제안된 플랫폼은 높은 정확도와 정밀도를 보였으며, 특히 Stacked Ensemble 모델 사용 시 우수한 성능을 나타냈다. 본 연구는 텍스트 분류 자동화를 통해 비전문가도 손쉽게 텍스트 데이터를 분석하고 활용할 수 있는 가능성을 제시하며, 향후 대규모 언어 모델(LLM)을 적용하여 성능을 더욱 향상시킬 계획이다.

머신러닝을 위한 데이터셋 수집 RPA 개발 (Development of Dataset Cllection RPA for Machine Learning)

  • 김기태;서보인;윤상혁;이세훈
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.295-296
    • /
    • 2020
  • 본 논문에서는 RPA(Robotic Process Automation) Tool 개발 과정 중 머신 러닝, 딥러닝에 필요한 이미지 크롤링 및 전처리 기능을 이용한 가공된 데이터 셋 처리 과정을 기술한다. 개발된 RPA 툴에서 머신러닝 및 딥러닝에 사용될 데이터 확보 기능을 제공하며, 세부적으로 이미지 전처리(Convert Gray, Histogram Equalization, Binary, Resize)등 반복적으로 사용되는 기능들을 제공한다. 개발된 툴을 통해 RPA의 자동화 기능과, 전처리 기능의 융합을 통해 업무의 효율성을 제공한다.

  • PDF

머신러닝을 이용한 빅데이터 도메인 자동 판별에 관한 연구 (A Study of Big Data Domain Automatic Classification Using Machine Learning)

  • 공성원;황덕열
    • 한국빅데이터학회지
    • /
    • 제3권2호
    • /
    • pp.11-18
    • /
    • 2018
  • 본 연구는 빅데이터 품질 진단의 핵심 요소인 도메인 기반 품질 진단을 위한 도메인 자동 판별에 관한 연구다. 빅데이터의 가치와 활용도의 증가와 4차 산업혁명의 대두로, 법률, 의료, 금융 등 IT와 융합된 다양한 분야에서 빅데이터를 활용하여 새로운 가치를 창출하려는 노력을 진행중이다. 하지만, 신뢰도가 낮은 데이터에 기반한 분석은 과정과 결과 모두에서 치명적인 문제를 발생하며, 분석 결과에 따른 판단 또한 신뢰하기 어려워 진다. 이처럼 신뢰도가 높은 데이터의 필요성 또한 증가하였지만, 데이터의 품질 확보에 대한 연구와 그에 대한 결과는 미비하다. 본 연구는 데이터 품질 향상을 위한 진단 평가의 핵심적 요소인 도메인 기반 품질 진단에서, 수작업으로 진행되었던 도메인 판별 작업을 머신러닝을 이용하여 자동화 함으로써, 작업시간을 단축하는 것을 목표로 한다. 데이터 베이스에 저장된, 도메인이 판별되어 있는 데이터의 특성에 관한 정보들을 추출하여 변수화하고, 이를 머신러닝을 이용하여 도메인 판별을 자동화 한다. 이를 빅데이터 품질 진단에 활용하고, 품질 향상에 기여하도록 한다.

머신 러닝 접근 방식을 통한 가짜 채용 탐지 (Detecting Fake Job Recruitment with a Machine Learning Approach)

  • 일킨 타히예프;이재흥
    • 스마트미디어저널
    • /
    • 제12권2호
    • /
    • pp.36-41
    • /
    • 2023
  • 지원자 추적 시스템의 등장으로 온라인 채용이 활성화되면서 채용 사기가 심각한 문제로 대두되고 있다. 이 연구는 온라인 채용 환경에서 채용 사기를 탐지할 수 있는 신뢰할 수 있는 모델을 개발하여 비용 손실을 줄이고 개인 사생활 보호를 강화하고자 한다. 이 연구의 주요 기여는 데이터를 탐색적으로 분석하여 얻은 통찰력을 활용하여 어떤 채용 정보가 사기인지, 아니면 합법적인지를 구분할 수 있는 자동화된 방법론을 제공하는데 있다. 캐글에서 제공하는 채용 사기 데이터 집합인 EMSCAD를 사용하여 다양한 단일 분류기 및 앙상블 분류기 기반 머신러닝 모델을 훈련하고 평가하였으며, 그 결과로 앙상블 분류기인 랜덤 포레스트 분류기가 정확도 98.67%, F1 점수 0.81로 가장 좋은 결과를 보이는 것을 알 수 있었다.

악성 URL 탐지를 위한 URL Lexical Feature 기반의 DL-ML Fusion Hybrid 모델 (DL-ML Fusion Hybrid Model for Malicious Web Site URL Detection Based on URL Lexical Features)

  • 김대엽
    • 정보보호학회논문지
    • /
    • 제33권6호
    • /
    • pp.881-891
    • /
    • 2023
  • 최근에는 인공지능을 활용하여 악성 URL을 탐지하는 다양한 연구가 진행되고 있으며, 대부분의 연구 결과에서 높은 탐지 성능을 보였다. 그러나 고전 머신러닝을 활용하는 경우 feature를 분석하고 선별해야 하는 추가 비용이 발생하며, 데이터 분석가의 역량에 따라 탐지 성능이 결정되는 이슈가 있다. 본 논문에서는 이러한 이슈를 해결하기 위해 URL lexical feature를 자동으로 추출하는 딥러닝 모델의 일부가 고전 머신러닝 모델에 결합된 형태인 DL-ML Fusion Hybrid 모델을 제안한다. 제안한 모델로 직접 수집한 총 6만 개의 악성과 정상 URL을 학습한 결과 탐지 성능이 최대 23.98%p 향상되었을 뿐만 아니라, 자동화된 feature engineering을 통해 효율적인 기계학습이 가능하였다.