• Title/Summary/Keyword: 자동학습

Search Result 1,555, Processing Time 0.034 seconds

Proposing and Validating an Automated Method of Cognitive Knowledge Structure Creation from Single Documents (단일 문서 기반의 인지적 지식구조 자동 생성 기법 제안 및 검증)

  • Kim, Hyung-Woo;Yi, Mun-Y.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.247-250
    • /
    • 2011
  • 본 연구는 단일 문서로부터 문서가 내포하고 있는 지식정보를 지식구조 혹은 인지스키마로 불리는 형태로 자동 생성하는 기법을 제안한다. 제안된 기법을 이용하여 자동 생성된 지식구조는 실제 문서 학습자의 학습 전, 후의 지식구조, 문서의 해당 지식을 명확히 알고 있는 도메인 전문가의 지식구조와의 유사도 측정을 통해 검증하였다. 자동 생성된 지식구조는 학습자의 학습 후 지식구조, 전문가 지식구조와 상당한 유사성을 보이며, 문서의 지식 정보를 인지적인 관점에서 정교하게 표현 하고 있음을 확인하였다. 이는 기존의 단어 기반의 정보 기술들에서 더욱 고차원적인 지식 정보를 활용한 지식구조 기반 정보 기술의 연구 가능성을 제시한다.

An Automatic Document Classification with Bayesian Learning (베이지안 학습을 이용한 문서의 자동분류)

  • Kim, Jin-Sang;Shin, Yang-Kyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.1
    • /
    • pp.19-30
    • /
    • 2000
  • As the number of online documents increases enormously with the expansion of information technology, the importance of automatic document classification is greatly enlarged. In this paper, an automatic document classification method is investigated and applied to UseNet 20 newsgroup articles to test its efficacy. The classification system uses Naive Bayes classification algorithm and the experimental result shows that a randomly selected newsgroup arcicle can be classified into its own category over 77% accuracy.

  • PDF

BClassifier : A Bookmark-Classification Agent Based on Naive Bayesian Learning Method (BClassifier : 나이브 베이지안 학습법에 기초한 북마크 분류 에이전트)

  • 최정민;김인철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.81-83
    • /
    • 2000
  • 최근 고성능 PC의 보급과 네트워크의 발달로 인하여 인터넷의 가용 정보가 폭발적으로 증가하고 있다. 이러한 추세에 따라 우리는 인터넷을 사용하여 많은 정보를 얻고 있다. 그러나 인터넷에 존재하는 정보는 수많은 웹 서버에 주소(URL)를 가지고 존재하게 되는데 사용자는 자신이 관심 있는 정보의 사이트를 재방문하기 위하여 웹 브라우저 북 마크 기능을 사용한다. 그러나, 북 마크를 효율적으로 사용하기 위해서는 북 마크 분류, 수정, 편집, 정렬등의 북 마크 관리가 필수적이지만 이와 같은 북 마크 관리 작업이 전반적으로 수작업으로 이루어져야 하는 단점이 있다. 이러한 문제점을 해결하기 위한 한가지 방법으로 웹 문서 분류를 위한 기계학습법을 적용하여 사용자의 북 마크를 카테고리별로 자동으로 분류, 재정렬해주는 북 마크 자동 분류 에이전트를 개발하고자 한다. 대표적인 분류 에이전트 시스템으로는 전자우편 분류 에이전트인 Maxims, 뉴스 기사 분류 에이전트인 NewT, 엔터테인먼트 선별 에이전트인 Ringo 등이 있으며, 이러한 시스템들은 분류 대상과 분류 방법, 기능 등에서 차이를 보이고 있다. 본 논문에서는 대표적인 교사학습 방법인 나이브 베이지안 학습법을 사용하여 북 마크를 자동으로 분류하는 북 마크 자동 분류 에이전트를 설계, 구현하였다.

  • PDF

A Study on the Automatic Extraction of Fomulation and Properties in Chemical Field Patent Document by Using Machine Learning Technology (기계학습 기술을 활용한 화학분야 특허문서의 조성/물성 정보 자동추출 방법 연구)

  • Kim, Hongki;Lee, Hayoung;Park, Jinwoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.277-280
    • /
    • 2019
  • 본 논문에서는 화학분야 특허 문서에 존재하는 도표(TABLE) 데이터를 인공지능 기술을 활용하여 자동으로 추출하고 정형화된 형태로 가공하는 방법을 제안한다. 특허 문서에서 도표 데이터는 실시예에서 실험결과나 비교결과를 간결하고 가시적으로 표현하기 위하여 주로 사용되나, 셀의 속성을 정의하는 헤더부분과 수치가 표현되는 값 부분의 경계가 모호하여 구조화하는데 어려움이 있다. 본 논문에서 제안하는 방법은 소량의 학습데이터를 구축하고 기계학습을 통해 도표에 존재하는 셀의 속성을 예측하고, 예측된 속성을 토대로 조성과 물성 정보를 자동으로 구분하여 추출하는 방법을 제시한다. 제시된 방법을 활용하여 화학 분야 조성물 특허의 도표데이터에 시뮬레이션 결과 각 항목별 98.17%의 속성 예측 정확도를 나타내었으며 기존 규칙기반 연구보다 작업난이도, 예측정확도에서 우수한 성과를 보인다.

  • PDF

Comparison of Educational Effectiveness Between Instructor-Centered Learning and Video Self-Instruction about Automatic External Defibrillator for High School Girls (여고생의 자동제세동기에 대한 강사중심학습과 영상자가학습과의 교육효과 비교)

  • Park, Sang-Sub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1732-1739
    • /
    • 2011
  • This study aims to make a comparison of educational effectiveness between instructor-centered learning and video self-instruction(VSI) about automatic external defibrillator(AED) for high school girls in order to help select an effective teaching method concerning AED. A total of 59 high school girls (29 for the experimental group, 30 for the control group) in J Province participated in this study from July 7 to 14, 2010. The analysis was carried out by using an SPSS WIN 12.0 Version program. After the AED instruction, the knowledge increased more in the experimental group (1.72) than that in the control group (1.60); self-confidence increased more in the experimental group (1.58) than that in the control group (1.46); and accuracy of technical performance increased more in the control group (5.46) than that in the experimental group (4.20). The experimental group (5.68) was more satisfied with AED instruction than the control group (4.95). Since video self-instruction proved to be more educationally effective than instructor-centered learning in most areas, it is necessary to apply video self-instruction to AED instruction in the future. However, further researches are necessary to see if video self-instruction is effective.

Smart Braille Learning Board to lower illiteracy rate for the Blind (시각장애인의 문맹률을 낮추기 위한 스마트 점자학습 보드)

  • Kim, Seong-Gyeong;Lee, Hyo-Jeong;Chang, Yoon-Hui;Kim, In-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.977-979
    • /
    • 2022
  • 본 논문에서는 시중에서 판매되는 점자학습 기기의 단점들을 보완한 점자학습 보드를 제안한다. 학습 보드는 다음과 같은 기능을 수행한다. 첫째, 자음, 모음 등의 기초적인 글자 학습, 단어와 문장 학습, 게임학습, 총 세 가지의 학습 모드를 지원하는 기능. 둘째, 사용자의 학습 데이터를 분석하여 마지막 학습 일자, 학습 진행 상황 등의 다양한 요소를 고려한 학습, 복습 내용을 자동으로 업로드하는 기능. 셋째, 기기에 연동된 애플리케이션을 통해 학습상태를 확인하고 기기를 조작하는 기능. 넷째, 학습 보드와 앱의 음성안내, 생체인식을 사용한 로그인, 음성인식을 통한 언어 변환, 보드 자동 교체 등의 사용자 편의성을 위한 기능이다. 본 논문은 이를 통해 점자학습에 대한 접근성을 높여 시각장애인의 문맹률 감소를 목표로 한다.

Development of Semi-automatic Construction Tool for Named Entity Dictionary based on Active Learning (능동 학습 기법을 활용한 개체명 사전 반자동 구축 도구 개발)

  • Yun, Bo-Hyun;Oh, Hyo-Jung
    • The Journal of Korean Association of Computer Education
    • /
    • v.18 no.6
    • /
    • pp.81-88
    • /
    • 2015
  • Along with advent of Web 3.0 era and advanced technologies of IoT(Internet of Things), massive amounts of information are generated. Reflecting this trend, this paper developed a semi-automatic construction tool for named entity dictionary based on active learning. Our proposed method chose error candidates to verify among the preliminary results using initial trained model and re-trained the model for correctly labeled data by user. We adopt active learning approach for minimizing human effort utilized metadata features of Wikipedia. Based on experimental results using our tool, we show that 68.6% errors were automatically corrected.

Automatic Generation of Music Accompaniment Using Reinforcement Learning (강화 학습을 통한 자동 반주 생성)

  • Kim, Na-Ri;Kwon, Ji-Yong;Yoo, Min-Joon;Lee, In-Kwon
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.739-743
    • /
    • 2008
  • In this paper, we introduce a method for automatically generating accompaniment music, according to user's input melody. The initial accompaniment chord is generated by analyzing user's input melody. Then next chords are generated continuously based on markov chain probability table in which transition probabilities of each chord are defined. The probability table is learned according to reinforcement learning mechanism using sample data of existing music. Also during playing accompaniment, the probability table is learned and refined using reward values obtained in each status to improve the behavior of playing the chord in real-time. The similarity between user's input melody and each chord is calculated using pitch class histogram. Using our method, accompaniment chords harmonized with user's melody can be generated automatically in real-time.

  • PDF

Study on Automatic Bug Triage using Deep Learning (딥 러닝을 이용한 버그 담당자 자동 배정 연구)

  • Lee, Sun-Ro;Kim, Hye-Min;Lee, Chan-Gun;Lee, Ki-Seong
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1156-1164
    • /
    • 2017
  • Existing studies on automatic bug triage were mostly used the method of designing the prediction system based on the machine learning algorithm. Therefore, it can be said that applying a high-performance machine learning model is the core of the performance of the automatic bug triage system. In the related research, machine learning models that have high performance are mainly used, such as SVM and Naïve Bayes. In this paper, we apply Deep Learning, which has recently shown good performance in the field of machine learning, to automatic bug triage and evaluate its performance. Experimental results show that the Deep Learning based Bug Triage system achieves 48% accuracy in active developer experiments, un improvement of up to 69% over than conventional machine learning techniques.

Study on the development of automatic translation service system for Korean astronomical classics by artificial intelligence - Focused on system analysis and design step (천문 고문헌 특화 인공지능 자동번역 서비스 시스템 개발 연구 - 시스템 요구사항 분석 및 설계 위주)

  • Seo, Yoon Kyung;Kim, Sang Hyuk;Ahn, Young Sook;Choi, Go-Eun;Choi, Young Sil;Baik, Hangi;Sun, Bo Min;Kim, Hyun Jin;Lee, Sahng Woon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.62.2-62.2
    • /
    • 2019
  • 한국의 고천문 자료는 삼국시대 이후 근대 조선까지 다수가 존재하여 세계적으로 드문 기록 문화를 보유하고 있으나, 한문 번역이 많이 이루어지지 않아 학술적 활용이 활발하지 못한 상태이다. 고문헌의 한문 문장 번역은 전문인력의 수작업에 의존하는 만큼 소요 시간이 길기에 투자대비 효율성이 떨어지는 편이다. 이에 최근 여러 분야에서 응용되는 인공지능의 적용을 대안으로 삼을 수 있으며, 초벌 번역 수준일지라도 자동번역기의 개발은 유용한 학술도구가 될 수 있다. 한국천문연구원은 한국정보화진흥원이 주관하는 2019년도 Information and Communication Technology 기반 공공서비스 촉진사업에 한국고전번역원과 공동 참여하여 인공신경망 기계학습이 적용된 고문헌 자동번역모델을 개발하고자 한다. 이 연구는 고천문 도메인에 특화된 인공지능 기계학습 기법으로 자동번역모델을 개발하여 이를 서비스하는 것을 목적으로 한다. 연구 방법은 크게 4가지 개발을 진행하는 것으로 나누어 볼 수 있다. 첫째, 인공지능의 학습 데이터에 해당되는 '코퍼스'를 구축하는 것이다. 이는 고문헌의 한자 원문과 한글 번역문이 쌍을 이루도록 만들어 줌으로써 학습에 최적화한 데이터를 최소 6만 개 이상 추출하는 것이다. 둘째, 추출된 학습 데이터 코퍼스를 다양한 인공지능 기계학습 기법에 적용하여 천문 분야 특수고전 도메인에 특화된 자동번역 모델을 생성하는 것이다. 셋째, 클라우드 기반에서 참여 기관별로 소장한 고문헌을 자동 번역 모델에 기반하여 도메인 특화된 모델로 도출 및 활용할 수 있는 대기관 서비스 플랫폼 구축이다. 넷째, 개발된 자동 번역기의 대국민 개방을 위해 웹과 모바일 메신저를 통해 자동 번역 서비스를 클라우드 기반으로 구축하는 것이다. 이 연구는 시스템 요구사항 분석과 정의를 바탕으로 설계가 진행 또는 일부 완료되어 구현 중에 있다. 추후 이 연구의 성능 평가는 자동번역모델 평가와 응용시스템 시험으로 나누어 진행된다. 자동번역모델은 평가용 테스트셋에 의한 자동 평가와 전문가에 의한 휴먼 평가에 따라 모델의 품질을 수치로 측정할 수 있다. 또한 응용시스템 시험은 소프트웨어 방법론의 개발 단계별 테스트를 적용한다. 이 연구를 통해 고천문 분야가 인공지능 자동번역 확산 플랫폼 시범의 첫 케이스라는 점에서 의의가 있다. 즉, 클라우드 기반으로 시스템을 구축함으로써 상대적으로 적은 초기 비용을 투자하여 활용성이 높은 한문 문장 자동 번역기라는 연구 인프라를 확보하는 첫 적용 학문 분야이다. 향후 이를 활용한 고천문 분야 학술 활동이 더욱 활발해질 것을 기대해 볼 수 있다.

  • PDF