• Title/Summary/Keyword: 자동판독

Search Result 131, Processing Time 0.033 seconds

Performance Evaluation of Monitoring System for Sargassum horneri Using GOCI-II: Focusing on the Results of Removing False Detection in the Yellow Sea and East China Sea (GOCI-II 기반 괭생이모자반 모니터링 시스템 성능 평가: 황해 및 동중국해 해역 오탐지 제거 결과를 중심으로)

  • Han-bit Lee;Ju-Eun Kim;Moon-Seon Kim;Dong-Su Kim;Seung-Hwan Min;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1615-1633
    • /
    • 2023
  • Sargassum horneri is one of the floating algae in the sea, which breeds in large quantities in the Yellow Sea and East China Sea and then flows into the coast of Republic of Korea, causing various problems such as destroying the environment and damaging fish farms. In order to effectively prevent damage and preserve the coastal environment, the development of Sargassum horneri detection algorithms using satellite-based remote sensing technology has been actively developed. However, incorrect detection information causes an increase in the moving distance of ships collecting Sargassum horneri and confusion in the response of related local governments or institutions,so it is very important to minimize false detections when producing Sargassum horneri spatial information. This study applied technology to automatically remove false detection results using the GOCI-II-based Sargassum horneri detection algorithm of the National Ocean Satellite Center (NOSC) of the Korea Hydrographic and Oceanography Agency (KHOA). Based on the results of analyzing the causes of major false detection results, it includes a process of removing linear and sporadic false detections and green algae that occurs in large quantities along the coast of China in spring and summer by considering them as false detections. The technology to automatically remove false detection was applied to the dates when Sargassum horneri occurred from February 24 to June 25, 2022. Visual assessment results were generated using mid-resolution satellite images, qualitative and quantitative evaluations were performed. Linear false detection results were completely removed, and most of the sporadic and green algae false detection results that affected the distribution were removed. Even after the automatic false detection removal process, it was possible to confirm the distribution area of Sargassum horneri compared to the visual assessment results, and the accuracy and precision calculated using the binary classification model averaged 97.73% and 95.4%, respectively. Recall value was very low at 29.03%, which is presumed to be due to the effect of Sargassum horneri movement due to the observation time discrepancy between GOCI-II and mid-resolution satellite images, differences in spatial resolution, location deviation by orthocorrection, and cloud masking. The results of this study's removal of false detections of Sargassum horneri can determine the spatial distribution status in near real-time, but there are limitations in accurately estimating biomass. Therefore, continuous research on upgrading the Sargassum horneri monitoring system must be conducted to use it as data for establishing future Sargassum horneri response plans.

Texture Feature analysis using Computed Tomography Imaging in Fatty Liver Disease Patients (Fatty Liver 환자의 컴퓨터단층촬영 영상을 이용한 질감특징분석)

  • Park, Hyong-Hu;Park, Ji-Koon;Choi, Il-Hong;Kang, Sang-Sik;Noh, Si-Cheol;Jung, Bong-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.2
    • /
    • pp.81-87
    • /
    • 2016
  • In this study we proposed a texture feature analysis algorithm that distinguishes between a normal image and a diseased image using CT images of some fatty liver patients, and generates both Eigen images and test images which can be applied to the proposed computer aided diagnosis system in order to perform a quantitative analysis for 6 parameters. And through the analysis, we derived and evaluated the recognition rate of CT images of fatty liver. As the results of examining over 30 example CT images of fatty liver, the recognition rates representing a specific texture feature-value are as follows: some appeared to be as high as 100% including Average Gray Level, Entropy 96.67%, Skewness 93.33%, and Smoothness while others showed a little low disease recognition rate: 83.33% for Uniformity 86.67% and for Average Contrast 80%. Consequently, based on this research result, if a software that enables a computer aided diagnosis system for medical images is developed, it will lead to the availability for the automatic detection of a diseased spot in CT images of fatty liver and quantitative analysis. And they can be used as computer aided diagnosis data, resulting in the increased accuracy and the shortened time in the stage of final reading.

Texture Feature Analysis Using a Brain Hemorrhage Patient CT Images (전산화단층촬영 영상을 이용한 뇌출혈 질감특징분석)

  • Park, Hyonghu;Park, Jikoon;Choi, Ilhong;Kang, Sangsik;Noh, Sicheol;Jung, Bongjae
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.369-374
    • /
    • 2015
  • In this study we proposed a texture feature analysis algorithm that distinguishes between a normal image and a diseased image using CT images of some brain hemorrhage patients, and generates both Eigen images and test images which can be applied to the proposed computer aided diagnosis system in order to perform a quantitative analysis for 6 parameters. And through the analysis, we derived and evaluated the recognition rate of CT images of brain hemorrhage. As the results of examining over 40 example CT images of brain hemorrhage, the recognition rates representing a specific texture feature-value are as follows: some appeared to be as high as 100% including average gray level, average contrast, smoothness, and Skewness while others showed a little low disease recognition rate: 95% for uniformity and 87.5% for entropy. Consequently, based on this research result, if a software that enables a computer aided diagnosis system for medical images is developed, it will lead to the availability for the automatic detection of a diseased spot in CT images of brain hemorrhage and quantitative analysis. And they can be used as computer aided diagnosis data, resulting in the increased accuracy and the shortened time in the stage of final reading.

A Comparative Study on Defibrillation Efficiency According to Defibrillation Type (제세동 유형에 따른 제세동 효율성 비교 연구)

  • Lee, Hyeon-Ji;Hwang, Jeong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.579-588
    • /
    • 2017
  • The purpose of this study was to examine the defibrillation efficiency according to the defibrillator type among paramedics by making a comparative analysis of the chest compression pause time and defibrillation efficiency after providing simulation education. The subjects in this study were 15 paramedics who were selected from a provincial 119 safety center. The experiment was conducted using a single-group pretest-post test design from March 2 to August 31, 2016. The collected data were analyzed by SPSS WIN 21.0, and a frequency analysis was conducted. The findings of this study were as follows: First, there was a significantly greater decrease in the chest compression pause time during CPR after providing simulation education when semi-automated defibrillators were used than when manual paddles and manual pads were employed. Second, there was a statistically significant decrease in the performance time of defibrillation when semi-automated defibrillators were used than when manual paddles and manual pads were used. The findings of this study are expected to provide paramedics with simulation education on how to promptly read ECGs using the manual mode of a semi-automated defibrillator to help more patients revive and on how to facilitate their job enlargement.

Development of Automatic Cluster Algorithm for Microcalcification in Digital Mammography (디지털 유방영상에서 미세석회화의 자동군집화 기법 개발)

  • Choi, Seok-Yoon;Kim, Chang-Soo
    • Journal of radiological science and technology
    • /
    • v.32 no.1
    • /
    • pp.45-52
    • /
    • 2009
  • Digital Mammography is an efficient imaging technique for the detection and diagnosis of breast pathological disorders. Six mammographic criteria such as number of cluster, number, size, extent and morphologic shape of microcalcification, and presence of mass, were reviewed and correlation with pathologic diagnosis were evaluated. It is very important to find breast cancer early when treatment can reduce deaths from breast cancer and breast incision. In screening breast cancer, mammography is typically used to view the internal organization. Clusterig microcalcifications on mammography represent an important feature of breast mass, especially that of intraductal carcinoma. Because microcalcification has high correlation with breast cancer, a cluster of a microcalcification can be very helpful for the clinical doctor to predict breast cancer. For this study, three steps of quantitative evaluation are proposed : DoG filter, adaptive thresholding, Expectation maximization. Through the proposed algorithm, each cluster in the distribution of microcalcification was able to measure the number calcification and length of cluster also can be used to automatically diagnose breast cancer as indicators of the primary diagnosis.

  • PDF

Automatic Detection of Stage 1 Sleep Utilizing Simultaneous Analyses of EEG Spectrum and Slow Eye Movement (느린 안구 운동(SEM)과 뇌파의 스펙트럼 동시 분석을 이용한 1단계 수면탐지)

  • Shin, Hong-Beom;Han, Jong-Hee;Jeong, Do-Un;Park, Kwang-Suk
    • Sleep Medicine and Psychophysiology
    • /
    • v.10 no.1
    • /
    • pp.52-60
    • /
    • 2003
  • Objectives: Stage 1 sleep provides important information regarding interpretation of nocturnal polysomnography, particularly sleep onset. It is a short transition period from wakeful consciousness to sleep. The lack of prominent sleep events characterizing stage 1 sleep is a major obstacle in automatic sleep stage scoring. In this study, utilization of simultaneous EEG and EOG processing and analyses to detect stage 1 sleep automatically were attempted. Methods: Relative powers of the alpha waves and the theta waves were calculated from spectral estimation. A relative power of alpha waves less than 50% or relative power of theta waves more than 23% was regarded as stage 1 sleep. SEM(slow eye movement) was defined as the duration of both-eye movement ranging from 1.5 to 4 seconds, and was also regarded as stage 1 sleep. If one of these three criteria was met, the epoch was regarded as stage 1 sleep. Results were compared to the manual rating results done by two polysomnography experts. Results: A total of 169 epochs were analyzed. The agreement rate for stage 1 sleep between automatic detection and manual scoring was 79.3% and Cohen’s Kappa was 0.586 (p<0.01). A significant portion (32%) of automatically detected stage 1 sleep included SEM. Conclusion: Generally, digitally-scored sleep staging shows accuracy up to 70%. Considering potential difficulty in stage 1 sleep scoring, accuracy of 79.3% in this study seems to be strong enough. Simultaneous analysis of EOG differentiates this study from previous ones which mainly depended on EEG analysis. The issue of close relationship between SEM and stage 1 sleep raised by Kinnari remains a valid one in this study.

  • PDF

Automatic Interpretation of F-18-FDG Brain PET Using Artificial Neural Network: Discrimination of Medial and Lateral Temporal Lobe Epilepsy (인공신경회로망을 이용한 뇌 F-18-FDG PET 자동 해석: 내.외측 측두엽간질의 감별)

  • Lee, Jae-Sung;Lee, Dong-Soo;Kim, Seok-Ki;Park, Kwang-Suk;Lee, Sang-Kun;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.3
    • /
    • pp.233-240
    • /
    • 2004
  • Purpose: We developed a computer-aided classifier using artificial neural network (ANN) to discriminate the cerebral metabolic pattern of medial and lateral temporal lobe epilepsy (TLE). Materials and Methods: We studied brain F-18-FDG PET images of 113 epilepsy patients sugically and pathologically proven as medial TLE (left 41, right 42) or lateral TLE (left 14, right 16). PET images were spatially transformed onto a standard template and normalized to the mean counts of cortical regions. Asymmetry indices for predefined 17 mirrored regions to hemispheric midline and those for medial and lateral temporal lobes were used as input features for ANN. ANN classifier was composed of 3 independent multi-layered perceptrons (1 for left/right lateralization and 2 for medial/lateral discrimination) and trained to interpret metabolic patterns and produce one of 4 diagnoses (L/R medial TLE or L/R lateral TLE). Randomly selected 8 images from each group were used to train the ANN classifier and remaining 51 images were used as test sets. The accuracy of the diagnosis with ANN was estimated by averaging the agreement rates of independent 50 trials and compared to that of nuclear medicine experts. Results: The accuracy in lateralization was 89% by the human experts and 90% by the ANN classifier Overall accuracy in localization of epileptogenic zones by the ANN classifier was 69%, which was comparable to that by the human experts (72%). Conclusion: We conclude that ANN classifier performed as well as human experts and could be potentially useful supporting tool for the differential diagnosis of TLE.

Development of a Semi-Automated Detection Method and a Classification System for Bone Metastatic Lesions in Vertebral Body on 3D Chest CT (3차원 흉부 CT에서 추체 골 전이 병변에 대한 반자동 검출 기법 및 분류 시스템 개발)

  • Kim, Young Jae;Lee, Seung Hyun;Choi, Ja Young;Sun, Hye Young;Kim, Kwang Gi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.10
    • /
    • pp.887-895
    • /
    • 2013
  • Metastatic bone cancer, the cancer which occurred in the various organs and progressively spread to bone, is one of the complications in cancer patients. This cancer is divided into the osteoblast and osteolytic metastasis. Although Computer Tomography(CT) could be an useful tool in diagnosis of bone metastasis, lesions are often missed by the visual inspection and it makes clinicians difficult to detect metastasis earlier. Therefore, in this study, we construct a three-dimensional(3D) volume rendering data from tomography images of the chest CT, and apply a 3D based image processing algorithm to them for detection bone metastasis lesions. Then we perform a three-dimensional visualization of the detected lesions.From our test using 10 clinical cases, we confirmed 94.1% of average sensitivity for osteoblast, and 90.0% of average sensitivity, respectively. Consequently, our findings showed a promising possibility and potential usefulness in diagnosis of metastastic bone cancer.

Breaking character and natural image based CAPTCHA using feature classification (특징 분리를 통한 자연 배경을 지닌 글자 기반 CAPTCHA 공격)

  • Kim, Jaehwan;Kim, Suah;Kim, Hyoung Joong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.5
    • /
    • pp.1011-1019
    • /
    • 2015
  • CAPTCHA(Completely Automated Public Turing test to tell Computers and Humans Apart) is a test used in computing to distinguish whether or not the user is computer or human. Many web sites mostly use the character-based CAPTCHA consisting of digits and characters. Recently, with the development of OCR technology, simple character-based CAPTCHA are broken quite easily. As an alternative, many web sites add noise to make it harder for recognition. In this paper, we analyzed the most recent CAPTCHA, which incorporates the addition of the natural images to obfuscate the characters. We proposed an efficient method using support vector machine to separate the characters from the background image and use convolutional neural network to recognize each characters. As a result, 368 out of 1000 CAPTCHAs were correctly identified, it was demonstrated that the current CAPTCHA is not safe.

Strong Yoking Proof Protocols for RFID Tags (RFID tag를 위한 강력한 Yoking Proof Protocols)

  • Cho, Jung-Sik;Yeo, Sang-Soo;Kim, Sung-Kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3A
    • /
    • pp.310-318
    • /
    • 2007
  • The RFID system is a non-contact automatic identification system that identifies tags through a reading device by attaching small, inexpensive tags on goods. This system is expected to supplant barcodes, the contactless reading technique that is most widely used at present. The RFID system can be applied in a variety of areas. Among those, Ari Juels proposed an environment to prove that a pair of tags has been scanned simultaneously And he presented a yoking proof protocol for this. But the yoking-proof protocol is vulnerable to replay attack. Although modified yoking-proof protocols for alleviating this drawback have been proposed, they are not immune to replay attack, either. In this paper, we analyze problems of existing yoking-proof protocols and present a new protocol, which will make replay attack difficult, based on this analysis. We have also extend this protocol so that it can provide yoking proofs for n tags.