• Title/Summary/Keyword: 자동크레인

Search Result 42, Processing Time 0.015 seconds

A study on the productivity effects of transport vehicle by pooling system at container terminals (이송장비의 Pooling 운행방식에 따른 터미널하역생산성 효과)

  • Ha, Tae-Young;Shin, Jae-Yeong;Choi, Yong-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.377-382
    • /
    • 2005
  • This paper deals with productivity improvement of stevedoring system by pooling opertaions of transport vehicle at automated container terminal. Usually, in traditional container terminals, grouping operations of transport vehicle are applied for container crane because vehicle routing path is simple and vehicle assignment is easy. But this static assignment(SA) operation that arrsign vehicles to container crane ar apron reduces flexibility of vehicles. Therefore, This paper presented 4 dynamic assignment(DA) method to improve efficiency of vehicles. These 4 dynamic assignment method consider present situations of container crane such as sequence(Se), queue time(Qt), productivity(Pr), numeric of vehicle assignment(Nv), numeric of buffer(Nb) at vehicles assignment. At the results, dynamic assignment operation to consider Qt, Nv, Nb is most efficient and by next time, dynamic assignment operation to consider Se is superior more than static assignment operation. but, dynamic assignment operation to consider Pr or Qt of container crane only is inefficient than static assignment operation.

  • PDF

Analysis of Site Condition in Domestic Trade Port for Operation of Mobile Harbor (모바일하버 운영을 위한 국내 무역항 후보지 분석)

  • Lee, Joong-Woo;Gug, Seung-Gi;Jung, Dae-Deug;Yang, Sang-Young;Kim, Tae-Hyung
    • Journal of Navigation and Port Research
    • /
    • v.34 no.10
    • /
    • pp.781-786
    • /
    • 2010
  • In this study, a new concept of ocean transport system, called the mobile harbor serving for a short distance transport of containers with cargo handling cranes between mother containerships and coastal ports, is introduced. Instead of direct berthing a very large containership at the coastal port, Mobile Harbor is moving to the offshore mooring basin with enough water depth condition. Therefore, investigation of the coastal environment, technical condition and limitation of the domestic trade ports for the application of Mobile Harbor, is essential process. To figure out the accessibility of mobile harbor, the environmental conditions, the cargo handling capacity and marine traffic volume and flow pattern has been analyzed with the tools for marine traffic simulation and virtual navigation aids system. The most proper Mobile Harbor mooring areas among trade ports of the south and east coast are selected by analyzing the obtained information and evaluating its application: (1) Under natural environmental conditions such as air and sea weather, three candidate areas are selected such as Masan port, Ulsan port, and Busan(New port) port. (2) Under marine traffic and appropriateness of water facilities, three candidate areas are selected as Mokpo port, Busan(New port) port, and Donghae & Mookho port (3) For a region-based analysis considering handling capacity and the local managed trade ports in vicinity, three candidate areas are selected as Busan region, Yosu & KwangYang region, and Mokpo region. Through this study, the basic guideline for selection of optimum trade port and offshore mooring basin for mothership and Mobile Harbor is recommended. In order to apply the Mobile Harbor to the real water, navigaton aids as the virtual route identification with AIS must be introduced for maritime safety in the vicinity of Mobile Harbor area which berthing and cargo handling is being conducted.